Neural Radiance Fields (NeRF) 和 3D Gaussian Splatting区别

Neural Radiance Fields (NeRF)3D Gaussian Splatting 是两种用于3D场景重建和渲染的技术。它们都旨在创建高质量的3D图像,但它们的技术原理和应用场景有所不同。

1. Neural Radiance Fields (NeRF)

NeRF使用深度学习技术,特别是一种密集的神经网络(通常是多层感知机,MLP),来建模复杂的3D场景。它通过训练一个神经网络来预测给定3D位置和观察方向下的颜色和体积密度。

技术原理:

  • 输入:3D坐标和观察方向。
  • 神经网络:一个MLP网络,输出每个点的颜色和体积密度。
  • 体积渲染:通过沿视线方向对密度和颜色进行积分来渲染图像。这涉及到计算沿光线的颜色累积,使用体积渲染的技术来合成最终的像素颜色。

2. 3D Gaussian Splatting

3D Gaussian Splatting是一种体积渲染技术,经常用于医学影像和科学可视化。它通过将数据点表示为具有高斯权重的样本,然后将这些样本投影到视图平面上,来实现3D数据的可视化。

技术原理:

  • 输入:一组3D数据点,每个点可能有一个或多个相关的属性值(如密度、颜色、温度等)。
  • 高斯权重:每个数据点被视为一个高斯分布的中心,这个分布定义了点影响的空间范围和形状。
  • 渲染过程:在渲染过程中,每个点的高斯分布被"splat"(或投影)到一个2D视图上。这包括计算每个高斯样本对最终图像的贡献,通常是通过积分高斯权重来实现。

NeRF与3D Gaussian Splatting的比较

基于物理的渲染 vs. 基于数据的可视化:

  • NeRF基于物理模型,通过模拟光线在场景中的传播来创建逼真的图像。它的目标是从多个图像重建出一个全局一致的3D场景,并能从任意新视角进行逼真渲染。
  • 3D Gaussian Splatting更多地关注于科学数据的准确和直观表达,例如在MRI或CT扫描数据的可视化中,它强调的是数据点的直接表示和属性的清晰显示。

性能和复杂性:

  • NeRF需要大量的计算资源,尤其是在训练阶段。它依赖于神经网络来精确捕捉和渲染复杂的场景细节。
  • 3D Gaussian Splatting通常计算上不如NeRF复杂,它可以实时进行,适用于交互式数据探索和可视化。

总的来说,NeRF和3D Gaussian Splatting各有其独特的应用领域和优势。NeRF在创建逼真的视觉效果和处理复杂场景方面表现出色,而3D Gaussian Splatting则更适合于科学和医学领域,需要快速、清晰地可视化3D数据集。

相关推荐
小溪彼岸20 分钟前
快来添加你的第一位AI好友
aigc
爱吃的小肥羊1 小时前
这个免费的AI插件,居然让我5分钟看完2小时的YouTube视频!
aigc
陈小峰_iefreer2 小时前
stone 3d v3.3.0版本发布,含时间线和连接器等新功能
3d·webgl·metaverse·cadcg
数据智能老司机17 小时前
构建具备自主性的人工智能系统——探索协调者、工作者和委托者方法
深度学习·llm·aigc
数据智能老司机17 小时前
构建具备自主性的人工智能系统——使代理能够使用工具和进行规划
深度学习·llm·aigc
子燕若水18 小时前
“Daz to Unreal”将 G8 角色(包括表情)从 daz3d 导入到 UE5。在 UE5 中,我发现使用某个表情并与闭眼混合后,上眼睑出现了问题
3d·ue5
漫谈网络1 天前
Ollama工具调用(Tool Calls)业务应用案例
linux·ai·aigc·工具调用·ollama·tool calls
zhu_zhu_xia1 天前
JS通过GetCapabilities获取wms服务元数据信息并在SuperMap iClient3D for WebGL进行叠加显示
javascript·3d·webgl
SQ有空就喝水1 天前
Midscene 提示词工程实战:从入门到精通的 11 个核心技巧
前端·aigc·ai编程
星空寻流年1 天前
css3新特性第七章(3D变换)
前端·css·3d