python内存泄漏解决

一、目录

1 定义

2 内存泄漏的常见原因

3 检测

4 解决方法

二、实现

  1. 定义

    程序在使用完内存后未正确释放,导致内存占用不断增加,最终耗尽内存资源。python中,由于提供自动内存管理机制(垃圾回收),内存泄漏问题比较少,但仍然会发生。

  2. 内存泄漏的常见原因

a.循环引用:当两个或多个对象相互引用时,如果没有妥善地处理,可能会导致内存泄漏。垃圾回收器无法识别这种情况,因为这些对象不再被使用,但由于引用计数不为零,无法被垃圾回收。

复制代码
class A():
    def __init__(self):
        self.b = None

class B():
    def __init__(self):
        self.a = None
a = A()
b = B()
a.b = b
b.a = a
解决:
# 打破循环引用
a.b = None
b.a = None

# 错误示例:循环中创建大量临时对象
for i in range(1000000):
    temp_list = [i] * 1000000  # 大量临时对象
    # 正确做法:不要在循环中创建大对象或者临时对象
    # 或者在每次迭代后手动清理资源
    del temp_list     #清空对象
 
# 错误示例:对象间产生了强引用循环
class MyClass:
    def __init__(self):
        self.list_of_myself = []
 
    def leak_memory(self):
        for i in range(1000000):
            self.list_of_myself.append(self)  # 强引用循环
            # 正确做法:使用弱引用或者在每次迭代后手动解除引用
            # self.list_of_myself.pop()
 
# 使用弱引用的示例
import weakref
 
class MyClass:
    def __init__(self):
        self.list_of_myself = []
 
    def leak_memory(self):
        for i in range(1000000):
            self.list_of_myself.append(weakref.ref(self))  # 使用弱引用
            # 正确做法:定期清理弱引用后来的死对象
            # 可以在适当的时候手动检查并清理弱引用
 
# 正确示例:使用生成器来避免大对象
def generate_data(n):
    for i in range(n):
        yield i  # 使用生成器,不会创建大列表
 
for item in generate_data(1000000):
    # 处理数据
    pass

b.全局变量:全局变量占用的内存会一直存在,直到程序结束。如果在程序中使用了大量的全局变量,或者没有及时释放不再使用的全局变量,可能会导致内存泄漏。

复制代码
del 变量
gc.collect()

c.长期运行的进程:长期运行的进程可能会因为长时间的运行而导致内存泄漏。例如,在一个循环中创建大量的对象,但没有及时释放,就会导致内存泄漏。

复制代码
采用多线程,线程结束则进行回收。

d.第三方库:使用第三方库时,如果没有正确地管理资源,可能会导致内存泄漏。例如,打开文件、数据库连接等资源没有正确关闭。

复制代码
f = open('file.txt', 'w')
f.write('hello')

e.C扩展模块:Python中的C扩展模块可能会导致内存泄漏。如果在C代码中使用了动态分配的内存,但没有及时释放,就会导致内存泄漏。

  1. 检测

    from memory_profiler import profile

    @profile
    def load_data():
    data = []
    for i in range(10000):
    data.append(dict(id=i, name='name{}'.format(i)))
    return data

    if name == 'main':
    my_data = load_data()

    代码行号 内存占用 内存增量 代码
    Line # Mem usage Increment Occurrences Line Contents

    复制代码
      4     62.7 MiB     62.7 MiB           1   @profile
      5                                         def load_data():
      6     62.7 MiB      0.0 MiB           1       data = []
      7     66.0 MiB      0.5 MiB       10001       for i in range(10000):
      8     66.0 MiB      2.8 MiB       10000           data.append(dict(id=i, name='name{}'.format(i)))
      9     66.0 MiB      0.0 MiB           1       return data
  2. 解决方法

    1. 弱引用`

    import weakref
    import numpy as np
    a = np.array([1, 2, 3])
    b = weakref.ref(a)

    print(f"b:{b}")
    print(f"a:{a}")
    print("使用b()可以访问b引用的对象")
    print(f"b() = {b()}") #调用方法
    a = None #杀死方法
    print("====== 运行 a = None 后 ======")
    print(f"b:{b}") #

  3. 避免创建全局变量

  4. 采用多线程,线程结束则进行回收。

  5. 避免使用循环引用。

  6. 正确使用引用库。

相关推荐
心情好的小球藻7 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥8 分钟前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
惜.己19 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
Y40900125 分钟前
C语言转Java语言,相同与相异之处
java·c语言·开发语言·笔记
都叫我大帅哥2 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`4 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
古月-一个C++方向的小白6 小时前
C++11之lambda表达式与包装器
开发语言·c++
写写闲篇儿6 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
沐知全栈开发6 小时前
Eclipse 生成 jar 包
开发语言
杭州杭州杭州7 小时前
Python笔记
开发语言·笔记·python