零售数据分析之补货表怎么做?

做零售数据分析,不仅要关注销售,还需要注意补货分析。通过补货分析了解不同商品要在什么时候进行补货,提前做好库存准备,以免出现补货不及时的失误。那么,零售数据分析中的补货表该怎么做?需要计算分析哪些指标?针对这个问题,奥威BI零售数据分析方案提供了模板。
这是一张BI商品补货建议总表。和其他BI零售数据分析报表一样,这张报表也预设了筛选控件,浏览者可自由筛选不同日期、不同品类、不同门店的数据进行商品补货分析。

在这张BI商品补货建议总表上,我们主要计算分析了以下指标:

1、日均销量、预测数量、库存数量、建议补货数量

根据日均销量来预测数量,然后在结合库存数量得出建议补货数量。

2、实际销量、预测准确率、销售数量

预测销量准不准,实际销售数量是多少,都可从中得知。这也起到一个补货前后的对照效果,可以为后续的补货预测提供一定参考价值。

3、后10日实际销量、近来90日销售数量、近90天日均销量。

商品的销售不是一成不变的,有可能随着季节变化而变化,在这张表格中,我们通过对后10日、近来90日的销售数量进行分析,计算近90天日均销量可以更直观地了解到商品的销售变化,给后续的商品补货提供参考。

零售数据分析的过程中往往需要进行很多指标计算,这张BI商品补货建议总表就是一个典型,那么制作这样的报表会不会很耗时?

其实不会,奥威BI软件提供大量点击即生效的内存行列计算功能,还提供自定义公式功能,可自定义计算公式,由BI系统自动取数计算,十分高效且方便。如上图就更简单了,这是来自BI零售数据分析方案中的一张报表,下载使用后,仅需更新数据即可立即完成指标计算分析,获得一张新的BI商品补货建议总表,此后每月也仅需一键更新数据即可。

奥威BI零售数据分析方案,预设"人、货、场、供、财"等,共计40多张BI零售数据分析报表,点击应用立即实现系统化的零售数据可视化分析,计算分析指标,完成数据分析,为运营决策提供更多参考信息。

相关推荐
程序员阿超的博客1 小时前
Python 数据分析与机器学习入门 (五):Matplotlib 数据可视化基础
python·信息可视化·数据分析·matplotlib·数据可视化·python教程·pyplot
顾道长生'2 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
蓝婷儿7 小时前
Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
python·数据分析·逻辑回归
好开心啊没烦恼8 小时前
Python:线性代数,向量内积谐音记忆。
开发语言·python·线性代数·数据挖掘·数据分析
过期的秋刀鱼!9 小时前
用“做饭”理解数据分析流程(Excel三件套实战)
数据挖掘·数据分析·excel·powerbi·数据分析入门
小庞在加油9 小时前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
kngines9 小时前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
大数据CLUB11 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
程序员阿超的博客12 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
kngines16 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题