零售数据分析之补货表怎么做?

做零售数据分析,不仅要关注销售,还需要注意补货分析。通过补货分析了解不同商品要在什么时候进行补货,提前做好库存准备,以免出现补货不及时的失误。那么,零售数据分析中的补货表该怎么做?需要计算分析哪些指标?针对这个问题,奥威BI零售数据分析方案提供了模板。
这是一张BI商品补货建议总表。和其他BI零售数据分析报表一样,这张报表也预设了筛选控件,浏览者可自由筛选不同日期、不同品类、不同门店的数据进行商品补货分析。

在这张BI商品补货建议总表上,我们主要计算分析了以下指标:

1、日均销量、预测数量、库存数量、建议补货数量

根据日均销量来预测数量,然后在结合库存数量得出建议补货数量。

2、实际销量、预测准确率、销售数量

预测销量准不准,实际销售数量是多少,都可从中得知。这也起到一个补货前后的对照效果,可以为后续的补货预测提供一定参考价值。

3、后10日实际销量、近来90日销售数量、近90天日均销量。

商品的销售不是一成不变的,有可能随着季节变化而变化,在这张表格中,我们通过对后10日、近来90日的销售数量进行分析,计算近90天日均销量可以更直观地了解到商品的销售变化,给后续的商品补货提供参考。

零售数据分析的过程中往往需要进行很多指标计算,这张BI商品补货建议总表就是一个典型,那么制作这样的报表会不会很耗时?

其实不会,奥威BI软件提供大量点击即生效的内存行列计算功能,还提供自定义公式功能,可自定义计算公式,由BI系统自动取数计算,十分高效且方便。如上图就更简单了,这是来自BI零售数据分析方案中的一张报表,下载使用后,仅需更新数据即可立即完成指标计算分析,获得一张新的BI商品补货建议总表,此后每月也仅需一键更新数据即可。

奥威BI零售数据分析方案,预设"人、货、场、供、财"等,共计40多张BI零售数据分析报表,点击应用立即实现系统化的零售数据可视化分析,计算分析指标,完成数据分析,为运营决策提供更多参考信息。

相关推荐
江上月5139 小时前
Pandas 高级教程:解锁数据分析的强大潜能
数据挖掘·数据分析·pandas
wasp5209 小时前
Apache Hudi 项目总体分析
数据挖掘·apache·hudi·数据湖仓
deng120411 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
大千AI助手14 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
Learn Beyond Limits17 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
点金石游戏出海19 小时前
玩家为何退出、不付费?读懂这些关键的“行为数据”,解锁增长密码!
游戏·数据分析·用户分析·游戏运营
咚咚王19 小时前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析
咚咚王者20 小时前
人工智能之数据分析 Matplotlib:第三章 基本属性
人工智能·数据分析·matplotlib
人大博士的交易之路21 小时前
龙虎榜——20251128
大数据·数学建模·数据挖掘·数据分析·缠论·龙虎榜·道琼斯结构
空影星1 天前
轻量日记神器RedNotebook,高效记录每一天
python·数据挖掘·数据分析·音视频