零售数据分析之补货表怎么做?

做零售数据分析,不仅要关注销售,还需要注意补货分析。通过补货分析了解不同商品要在什么时候进行补货,提前做好库存准备,以免出现补货不及时的失误。那么,零售数据分析中的补货表该怎么做?需要计算分析哪些指标?针对这个问题,奥威BI零售数据分析方案提供了模板。
这是一张BI商品补货建议总表。和其他BI零售数据分析报表一样,这张报表也预设了筛选控件,浏览者可自由筛选不同日期、不同品类、不同门店的数据进行商品补货分析。

在这张BI商品补货建议总表上,我们主要计算分析了以下指标:

1、日均销量、预测数量、库存数量、建议补货数量

根据日均销量来预测数量,然后在结合库存数量得出建议补货数量。

2、实际销量、预测准确率、销售数量

预测销量准不准,实际销售数量是多少,都可从中得知。这也起到一个补货前后的对照效果,可以为后续的补货预测提供一定参考价值。

3、后10日实际销量、近来90日销售数量、近90天日均销量。

商品的销售不是一成不变的,有可能随着季节变化而变化,在这张表格中,我们通过对后10日、近来90日的销售数量进行分析,计算近90天日均销量可以更直观地了解到商品的销售变化,给后续的商品补货提供参考。

零售数据分析的过程中往往需要进行很多指标计算,这张BI商品补货建议总表就是一个典型,那么制作这样的报表会不会很耗时?

其实不会,奥威BI软件提供大量点击即生效的内存行列计算功能,还提供自定义公式功能,可自定义计算公式,由BI系统自动取数计算,十分高效且方便。如上图就更简单了,这是来自BI零售数据分析方案中的一张报表,下载使用后,仅需更新数据即可立即完成指标计算分析,获得一张新的BI商品补货建议总表,此后每月也仅需一键更新数据即可。

奥威BI零售数据分析方案,预设"人、货、场、供、财"等,共计40多张BI零售数据分析报表,点击应用立即实现系统化的零售数据可视化分析,计算分析指标,完成数据分析,为运营决策提供更多参考信息。

相关推荐
仟濹13 小时前
「pandas 与 numpy」数据分析与处理全流程【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·python·数据分析·numpy·pandas
Leo.yuan19 小时前
数据挖掘是什么?数据挖掘技术有哪些?
大数据·数据库·人工智能·数据挖掘·数据分析
Mikhail_G20 小时前
数据分析入门初解
大数据·运维·开发语言·python·数据分析
说私域1 天前
新零售视域下实体与虚拟店融合的技术逻辑与商业模式创新——基于开源AI智能名片与链动2+1模式的S2B2C生态构建
人工智能·小程序·开源·零售
Oculus Reparo!1 天前
InternLM 论文分类微调实践(XTuner 版)
人工智能·分类·数据挖掘
张较瘦_1 天前
[论文阅读] 系统架构 | 零售 IT 中的微服务与实时处理:开源工具链与部署策略综述
大数据·论文阅读·零售
从零开始学习人工智能2 天前
Doris 与 Elasticsearch:谁更适合你的数据分析需求?
大数据·elasticsearch·数据分析
武汉格发Gofartlic2 天前
FEMFAT许可使用数据分析工具介绍
python·信息可视化·数据分析
数模竞赛Paid answer2 天前
2023年全国研究生数学建模竞赛华为杯D题区域双碳目标与路径规划研究求解全过程文档及程序
数学建模·数据分析·华为杯
Dfreedom.2 天前
Excel文件数据的读取和处理方法——C++
c++·数据分析·excel·数据预处理