[卷积神经网络]YoloV9

一、概述

代码路径为:

YoloV9https://github.com/WongKinYiu/yolov9

YoloV9的作者在论文中指出:现在的深度学习方法大多都在寻找一个合适的目标函数,但实际上输入数据在进行特征提取和空间变换的时候会丢失大量信息 。针对这个问题,本文提出了一个可编程梯度信息(PGI),目标是提供完整的输入信息给目标函数,从而获得更可靠的权值来更新网络。

从上面的图片可以看出,传统骨干网络提供给目标函数的数据多多少少都存在丢失的情况。为了解决这个问题,通过辅助的可逆分支 生成可靠的梯度,使深度特征仍然可以保持执行目标任务的关键特征。基于上述理论,本文设计了一种基于梯度路径规划的轻量级网络结构:广义高效层聚合网络(GELAN)。

二、模型

1.可编程梯度信息(PGI)

本文提出了一种辅助监督框架,称为可编程梯度信息 (PGI),如上图(d)所示。PGI主要由三个部分组成:①主分支 (main branch);②辅助可逆分支 (auxiliary reversible branch);③多层次辅助信息(multi-level auxiliary information)。由于推理过程中,模型会仅使用主分支,因此并不需要付出额外的推理成本。

另外,上图所示的其他方法为:(a)路径聚合网络 (PAN);(b)可逆列 (RevCol);(c)常规深度监督(c)。

2.GELAN

GELAN(广义有效聚合网络)通过结合CSPNet和ELAN两种网络的结构,使用梯度路径规划设计。

如上图所示,通过模仿CSPNet,将ELAN扩展到GELAN中去。

三、实验

实验基于MS COCO 2017数据集进行,与几种经典算法进行比较。均以M型为例

|----------|--------|----------|------------|
| | 参数量(M) | 浮点计算量(G) | mAP@.50(%) |
| YoloV5-m | 21.2 | 49.0 | 45.4 |
| YoloV7-m | 36.9 | 104.7 | 51.2 |
| YoloV8-m | 25.9 | 78.9 | 50.2 |
| YoloV9-m | 20.0 | 76.3 | 51.4 |

可见,在精度相当的情况下,YoloV9比较显著的缩小了参数量(-49%)和浮点计算量(-43%),同时,相较于YoloV8拥有更高的精度。

四、模块解析

1.RepNCSPELAN4

python 复制代码
class RepNCSPELAN4(nn.Module):
    # csp-elan
    def __init__(self, c1, c2, c5=1):  # c5 = repeat
        super().__init__()
        c3 = int(c2 / 2)
        c4 = int(c3 / 2)
        self.c = c3 // 2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.Sequential(RepNCSP(c3 // 2, c4, c5), Conv(c4, c4, 3, 1))
        self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
 
    def forward(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))
 
    def forward_split(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

2.SPPELAN金字塔池化

python 复制代码
class SP(nn.Module):
    def __init__(self, k=3, s=1):
        super(SP, self).__init__()
        self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
 
    def forward(self, x):
        return self.m(x)
 
 
class SPPELAN(nn.Module):
    # spp-elan
    def __init__(self, c1, c2, c3):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = c3
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = SP(5)
        self.cv3 = SP(5)
        self.cv4 = SP(5)
        self.cv5 = Conv(4*c3, c2, 1, 1)
 
    def forward(self, x):
        y = [self.cv1(x)]
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
        return self.cv5(torch.cat(y, 1))
相关推荐
AI人工智能+4 分钟前
发票识别技术:结合OCR与AI技术,实现纸质票据高效数字化,推动企业智能化转型
人工智能·nlp·ocr·发票识别
用户51914958484510 分钟前
Aniyomi扩展开发指南与Google Drive集成方案
人工智能·aigc
ezl1fe13 分钟前
第零篇:把 Agent 跑起来的最小闭环
人工智能·后端·agent
说私域16 分钟前
开源链动2+1模式AI智能名片S2B2C商城小程序在竞争激烈的中低端面膜服装行业中的应用与策略
大数据·人工智能·小程序
佛喜酱的AI实践18 分钟前
Claude Code配置魔法:从单人编程到专属AI团队协作
人工智能·claude
文心快码BaiduComate20 分钟前
文心快码Comate3.5S更新,用多智能体协同做个健康管理应用
前端·人工智能·后端
叶楊21 分钟前
PEFT适配器加载
人工智能·深度学习·机器学习
Tezign_space28 分钟前
AI用户洞察新纪元:atypica.AI如何重塑商业决策逻辑
人工智能·ai智能体·atypica
却道天凉_好个秋29 分钟前
OpenCV(十一):色彩空间转换
人工智能·opencv·计算机视觉
AI街潜水的八角32 分钟前
垃圾桶满溢检测和识别2:基于深度学习YOLOv12神经网络实现垃圾桶满溢检测和识别(含训练代码和数据集)
深度学习·神经网络·yolo