北大&字节联合发布视觉自动回归建模(VAR):通过下一代预测生成可扩展的图像

北大和字节发布一个新的图像生成框架VAR。首次使GPT风格的AR模型在图像生成上超越了Diffusion transformer。

同时展现出了与大语言模型观察到的类似Scaling laws的规律。在ImageNet 256x256基准上,VAR将FID从18.65大幅提升到1.80,IS从80.4提升到356.4,推理速度提高了20倍。

相关链接

项目地址:https://github.com/FoundationVision/VAR

Demo地址:https://var.vision

模型下载地址:https://huggingface.co/FoundationVision/var

VAR简介

视觉自回归建模(VAR)是一种新的视觉生成范式,它将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个令牌"不同预言"。这种简单、直观的方法允许自回归(AR)转换器快速学习视觉分布并很好地概括。

自回归视觉生成的新范式✨:

视觉自回归建模(VAR)将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个标记预测"不同。

GPT式自回归模型首次超越扩散模型:

该图研究了不同模型在ImageNet-256条件生成基准上的缩放行为。半径表示模型尺寸。轴采用对数刻度。 VAR首次使自回归模型在图像生成方面在多个维度上超越了扩散变换器(DiT):图像质量、推理速度、数据效率和可扩展性。

发现VAR Transformer中的幂律缩放定律

零样本泛化能力

提供模型下载地址

实验

在 ImageNet-256×256基准上,VAR通过将Fréchet起始距离(FID)从5.20提高到1.80、起始分数(IS)从280.3提高到356.4,显着提高了其 AR 基线,推理速度提高了24倍。VAR使得GPT式自回归模型在FID分数、IS分数、推理速度和可扩展性方面首先超越了扩散变压器(DiT)。

Demo生图效果

相关推荐
这张生成的图像能检测吗9 小时前
(论文速读)EgoLife:走向自我中心的生活助手
人工智能·计算机视觉·生活·视觉语言模型
Godspeed Zhao9 小时前
自动驾驶中的传感器技术24.2——Camera(17)
人工智能·机器学习·自动驾驶
pen-ai10 小时前
【数据工程】19. 从 DataOps 到可扩展机器学习:让数据与模型协同进化
人工智能·机器学习
Blossom.11810 小时前
把AI“编”进草垫:1KB决策树让宠物垫自己报「如厕记录」
java·人工智能·python·算法·决策树·机器学习·宠物
rengang6610 小时前
03-深度学习与机器学习的对比:分析深度学习与传统机器学习的异同
人工智能·深度学习·机器学习
墨风如雪11 小时前
大模型双雄逐鹿:深度思考与长程记忆的AI新篇章
aigc
倔强青铜三11 小时前
苦练Python第73天:玩转对象持久化,pickle模块极速入门
人工智能·python·面试
咕咚-萌西11 小时前
DeepSeek-OCR
人工智能·深度学习·ocr
xcbeyond11 小时前
从 MCP 到 RAG 再到 Agent:AI 应用架构的下一次跃迁
人工智能
Godspeed Zhao11 小时前
自动驾驶中的传感器技术74——Navigation(11)
人工智能·机器学习·自动驾驶