北大&字节联合发布视觉自动回归建模(VAR):通过下一代预测生成可扩展的图像

北大和字节发布一个新的图像生成框架VAR。首次使GPT风格的AR模型在图像生成上超越了Diffusion transformer。

同时展现出了与大语言模型观察到的类似Scaling laws的规律。在ImageNet 256x256基准上,VAR将FID从18.65大幅提升到1.80,IS从80.4提升到356.4,推理速度提高了20倍。

相关链接

项目地址:https://github.com/FoundationVision/VAR

Demo地址:https://var.vision

模型下载地址:https://huggingface.co/FoundationVision/var

VAR简介

视觉自回归建模(VAR)是一种新的视觉生成范式,它将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个令牌"不同预言"。这种简单、直观的方法允许自回归(AR)转换器快速学习视觉分布并很好地概括。

自回归视觉生成的新范式✨:

视觉自回归建模(VAR)将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个标记预测"不同。

GPT式自回归模型首次超越扩散模型:

该图研究了不同模型在ImageNet-256条件生成基准上的缩放行为。半径表示模型尺寸。轴采用对数刻度。 VAR首次使自回归模型在图像生成方面在多个维度上超越了扩散变换器(DiT):图像质量、推理速度、数据效率和可扩展性。

发现VAR Transformer中的幂律缩放定律

零样本泛化能力

提供模型下载地址

实验

在 ImageNet-256×256基准上,VAR通过将Fréchet起始距离(FID)从5.20提高到1.80、起始分数(IS)从280.3提高到356.4,显着提高了其 AR 基线,推理速度提高了24倍。VAR使得GPT式自回归模型在FID分数、IS分数、推理速度和可扩展性方面首先超越了扩散变压器(DiT)。

Demo生图效果

相关推荐
子午19 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Dev7z19 小时前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
da_vinci_x20 小时前
Firefly + Sampler:不连节点,光速量产游戏 VFX 特效贴图
游戏·aigc·贴图·建模·游戏策划·游戏美术·pbr
Mxsoft61920 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian20 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花20 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午21 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机21 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教21 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教21 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能