北大&字节联合发布视觉自动回归建模(VAR):通过下一代预测生成可扩展的图像

北大和字节发布一个新的图像生成框架VAR。首次使GPT风格的AR模型在图像生成上超越了Diffusion transformer。

同时展现出了与大语言模型观察到的类似Scaling laws的规律。在ImageNet 256x256基准上,VAR将FID从18.65大幅提升到1.80,IS从80.4提升到356.4,推理速度提高了20倍。

相关链接

项目地址:https://github.com/FoundationVision/VAR

Demo地址:https://var.vision

模型下载地址:https://huggingface.co/FoundationVision/var

VAR简介

视觉自回归建模(VAR)是一种新的视觉生成范式,它将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个令牌"不同预言"。这种简单、直观的方法允许自回归(AR)转换器快速学习视觉分布并很好地概括。

自回归视觉生成的新范式✨:

视觉自回归建模(VAR)将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个标记预测"不同。

GPT式自回归模型首次超越扩散模型:

该图研究了不同模型在ImageNet-256条件生成基准上的缩放行为。半径表示模型尺寸。轴采用对数刻度。 VAR首次使自回归模型在图像生成方面在多个维度上超越了扩散变换器(DiT):图像质量、推理速度、数据效率和可扩展性。

发现VAR Transformer中的幂律缩放定律

零样本泛化能力

提供模型下载地址

实验

在 ImageNet-256×256基准上,VAR通过将Fréchet起始距离(FID)从5.20提高到1.80、起始分数(IS)从280.3提高到356.4,显着提高了其 AR 基线,推理速度提高了24倍。VAR使得GPT式自回归模型在FID分数、IS分数、推理速度和可扩展性方面首先超越了扩散变压器(DiT)。

Demo生图效果

相关推荐
金井PRATHAMA2 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh2 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
CiLerLinux4 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
-dzk-5 小时前
【3DGS复现】Autodl服务器复现3DGS《简单快速》《一次成功》《新手练习复现必备》
运维·服务器·python·计算机视觉·3d·三维重建·三维
七芒星20235 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
嘟嘟MD5 小时前
程序员副业 | 2025年9月复盘
后端·aigc
Learn Beyond Limits6 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
byzy6 小时前
【论文笔记】VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving
论文阅读·深度学习·计算机视觉·自动驾驶
ACERT3336 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
C嘎嘎嵌入式开发6 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn