北大&字节联合发布视觉自动回归建模(VAR):通过下一代预测生成可扩展的图像

北大和字节发布一个新的图像生成框架VAR。首次使GPT风格的AR模型在图像生成上超越了Diffusion transformer。

同时展现出了与大语言模型观察到的类似Scaling laws的规律。在ImageNet 256x256基准上,VAR将FID从18.65大幅提升到1.80,IS从80.4提升到356.4,推理速度提高了20倍。

相关链接

项目地址:https://github.com/FoundationVision/VAR

Demo地址:https://var.vision

模型下载地址:https://huggingface.co/FoundationVision/var

VAR简介

视觉自回归建模(VAR)是一种新的视觉生成范式,它将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个令牌"不同预言"。这种简单、直观的方法允许自回归(AR)转换器快速学习视觉分布并很好地概括。

自回归视觉生成的新范式✨:

视觉自回归建模(VAR)将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个标记预测"不同。

GPT式自回归模型首次超越扩散模型:

该图研究了不同模型在ImageNet-256条件生成基准上的缩放行为。半径表示模型尺寸。轴采用对数刻度。 VAR首次使自回归模型在图像生成方面在多个维度上超越了扩散变换器(DiT):图像质量、推理速度、数据效率和可扩展性。

发现VAR Transformer中的幂律缩放定律

零样本泛化能力

提供模型下载地址

实验

在 ImageNet-256×256基准上,VAR通过将Fréchet起始距离(FID)从5.20提高到1.80、起始分数(IS)从280.3提高到356.4,显着提高了其 AR 基线,推理速度提高了24倍。VAR使得GPT式自回归模型在FID分数、IS分数、推理速度和可扩展性方面首先超越了扩散变压器(DiT)。

Demo生图效果

相关推荐
迅易科技18 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai