北大&字节联合发布视觉自动回归建模(VAR):通过下一代预测生成可扩展的图像

北大和字节发布一个新的图像生成框架VAR。首次使GPT风格的AR模型在图像生成上超越了Diffusion transformer。

同时展现出了与大语言模型观察到的类似Scaling laws的规律。在ImageNet 256x256基准上,VAR将FID从18.65大幅提升到1.80,IS从80.4提升到356.4,推理速度提高了20倍。

相关链接

项目地址:https://github.com/FoundationVision/VAR

Demo地址:https://var.vision

模型下载地址:https://huggingface.co/FoundationVision/var

VAR简介

视觉自回归建模(VAR)是一种新的视觉生成范式,它将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个令牌"不同预言"。这种简单、直观的方法允许自回归(AR)转换器快速学习视觉分布并很好地概括。

自回归视觉生成的新范式✨:

视觉自回归建模(VAR)将图像的自回归学习重新定义为从粗到细的"下一个尺度预测"或"下一个分辨率预测",与标准光栅扫描"下一个标记预测"不同。

GPT式自回归模型首次超越扩散模型:

该图研究了不同模型在ImageNet-256条件生成基准上的缩放行为。半径表示模型尺寸。轴采用对数刻度。 VAR首次使自回归模型在图像生成方面在多个维度上超越了扩散变换器(DiT):图像质量、推理速度、数据效率和可扩展性。

发现VAR Transformer中的幂律缩放定律

零样本泛化能力

提供模型下载地址

实验

在 ImageNet-256×256基准上,VAR通过将Fréchet起始距离(FID)从5.20提高到1.80、起始分数(IS)从280.3提高到356.4,显着提高了其 AR 基线,推理速度提高了24倍。VAR使得GPT式自回归模型在FID分数、IS分数、推理速度和可扩展性方面首先超越了扩散变压器(DiT)。

Demo生图效果

相关推荐
学习前端的小z27 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
埃菲尔铁塔_CV算法1 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR1 小时前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️1 小时前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁1 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
好喜欢吃红柚子1 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python1 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯2 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠2 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon2 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能