Matlab|基于广义Benders分解法的综合能源系统优化规划

目录

[1 主要内容](#1 主要内容)

广义benders分解法流程图:

优化目标:

约束条件:

[2 部分代码](#2 部分代码)

[3 程序结果](#3 程序结果)

[4 下载链接](#4 下载链接)


1 主要内容

该程序复现文章《综合能源系统协同运行策略与规划研究》第四章内容基于广义Benders分解法的综合能源系统优化规划,代码主要构建了以最小化包括初始投资和运行成本的总成本为优化目标的综合能源系统优化规划模型。模型上层是综合能源系统中相关设备的初始投资成本,下层以第三章所提出的综合能源优化运行问题为子问题,综合考虑风机、光伏随机性以及普遍存在的负荷预测误差等因素,通过广义Benders分解法进行求解。最后通过实际案例仿真分析,验证本文所提优化规划方法论可以实现综合能源系统在规划期内经济性最优,有力支撑了实际综合能源系统建设规划的策略依据。

广义benders分解法流程图:

优化目标:

约束条件:

2 部分代码

复制代码
%% 气网
m=14;n=16;     % 节点与支路个数
isb=1;
pr=0.0001;
BH=1.2;%压缩机常数
ZH=1.2;%压缩机常数
B1=[1     2     0.2526     1  % 4列分别为首节点i、末节点j、Kij和支路编号
    1     3     0.2410     2
    2     3     0.2990     3
    2     4     0.2924     4
    3     6     0.2777     5
    4     5     0.2777     6  % *
    5     8     0.2365     7
    6     7     0.1662     8  % *
    7     10    0.1662     9
    8     9     0.2365     10 % *
    9     12    0.1634     11
    10    11    0.1493     12 % *
    11    13    0.1493     13
    12    13    0.1598     14
    12    14    0.1665     15
    13    14    0.1534     16];       % 支路矩阵
B2=[1     0     1     0      1200;    % 5列分别为节点编号、节点类型、压缩机比例、节点负荷和节点压力
    2     1     1     20    700
    3     1     1     20    680
    4     1     1     40    520
    5     1     1     60    870
    6     1     1     0      500
    7     1     1     20    900
    8     1     1     30    720
    9     1     1     0      1000
    10    0     1     0      700
    11    1     1     0      1100
    12    1     1     40    680
    13    1     1     20    720
    14    1     1     80    650];     % 节点矩阵 类型为1的节点压力为自定义初值 类型为0的节点压力保持
B2(:,4)=abs(B2(:,4));
B1(:,3)=4.*B1(:,3);
%不收敛情况
%B2(:,5)=[1109.67741935484,993.548387096774,1022.58064516129,790.322580645161,587.096774193548,1022.58064516129,906.451612903226,616.129032258065,761.290322580645,848.387096774194,935.483870967742,1022.58064516129,1022.58064516129,1080.64516129032];
A0 = zeros(m,n);            % 构建关联矩阵A0 (m x n)
for i=1:16
    for j=1:14
    if B1(i,1)==j
        A0(j,i) = -1;
    end
    if B1(i,2)==j
        A0(j,i) = 1;
    end 
    end
end
% for i = 1:m
%     for j=1:n
%         COUNT1=[];
%         if B1(j,1)==i
%             COUNT1=[COUNT1 B1(j,4)];
%         end
%         A0(i,COUNT1) = 1;
%     end
%     for j=1:n
%         COUNT2=[];
%         if B1(j,2)==i
%             COUNT2=[COUNT2 B1(j,4)];
%         end
%         A0(i,COUNT2) = -1;
%     end
% end
A0;                     % 显示A0
A1 = A0(2:m,:);         % 构建缩减关联矩阵A1
A1;                     % 显示A1
for i=1:n               % 计算流量
    if B2(B1(i,1),5)^2 > B2(B1(i,2),5)^2
        S(i)=1;
    else
        S(i)=-1;
    end
    DetaP(i) = B2(B1(i,1),5)^2 - B2(B1(i,2),5)^2;
    f(i) = B1(i,3)*S(i)*sqrt(S(i)*DetaP(i));
end
P = B2(2:m,5); 
for i=1:m-1
    PAI(i)=P(i)^2;
end
PAI = PAI';             % 显示PAI
f = f';                 % 把流量f转化为列向量
L = B2(2:m,4);          % 负荷列向量L
F = A1*f-L;
kk=1;

3 程序结果

原文结果图:

从结果对比看,本程序收敛性能达到预期!

4 下载链接

相关推荐
Evand J10 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
我是博博啦15 小时前
matlab例题
人工智能·算法·matlab
2402_8713219517 小时前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
Matlab程序猿小助手1 天前
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
开发语言·嵌入式硬件·算法·matlab·机器人·无人机
Matlab精灵2 天前
使用MATLAB进行字符串处理
开发语言·matlab
机器学习之心2 天前
POD-Transformer多变量回归预测(Matlab)
matlab·回归·transformer·pod-transformer
WangYan20222 天前
高光谱遥感是什么?高光谱遥感数据如何处理?(基于Matlab和Python多案例解析)从小白到精通
matlab·高光谱遥感数据处理·混合像元分解
Matlab精灵3 天前
利用Matlab函数实现深度学习算法
深度学习·算法·matlab
十七算法实验室3 天前
Matlab实现北方苍鹰优化算法优化随机森林算法模型 (NGO-RF)(附源码)
开发语言·深度学习·算法·决策树·随机森林·机器学习·matlab
mailangduoduo3 天前
基于matlab的语音信号去噪的App Designer 设计
matlab·gui设计·语音去噪·app设计