边缘计算智能分析网关V4地面垃圾AI检测算法介绍及场景应用

在传统的卫生监管场景中,无法及时发现地面遗留的垃圾,通过人工巡逻的方式需要大量的人力、物力和时间,而且效率不高,并存在一定的滞后性,而采用地面垃圾AI检测算法则可以大大提高监管效率。

TSINGSEE青犀AI智能分析网关V4的地面垃圾AI检测算法可以自动识别划定区域内遗留的垃圾,若达到设置的告警时间,则发出告警消息。

地面垃圾AI检测算法的原理基于深度学习和计算机视觉技术。通过高清摄像头拍摄地面上的垃圾图像,然后将这些图像输入到训练好的深度学习模型中进行处理。模型会自动识别出图像中的垃圾,并生成分析结果。其原理主要包括以下几个步骤:

  • 数据收集:首先需要收集大量包含各种类型垃圾的图片数据,作为训练集。
  • 数据预处理:对收集到的图片数据进行预处理,包括图像尺寸调整、灰度处理、标注等操作。
  • 特征提取:通过卷积神经网络等技术,从图像中提取出关键特征,用于区分不同类型的垃圾。
  • 模型训练:利用训练集数据对模型进行训练,使其能够准确识别和分类地面垃圾。
  • 模型测试:通过测试数据验证模型的准确性和可靠性。

地面垃圾AI检测算法的应用场景非常广泛,包括城市管理、环境保护等领域。

  • 城市管理:可以通过安装高清摄像头和AI算法,在城市的道路和公共场所监控垃圾情况,及时发现并清理垃圾,减少人力和物力的投入。
  • 智慧环保:地面垃圾AI检测算法也可以帮助环保部门及时发现和处理垃圾污染问题,保护环境和生态。
  • 景区/公共场所:通过算法可以及时发现和处理游客乱扔垃圾的问题,维护公共场所的整洁和美观。
  • 农场/种植:及时发现和处理农田/农场/种植园中的垃圾和废弃物。
  • 餐饮后厨:自动识别后厨地面遗留的垃圾并抓拍和告警,提高后厨卫生监管效率。

TSINGSEE青犀AI智能分析网关V4在环境卫生场景中的算法除了地面垃圾AI检测算法之外,还支持垃圾投放提示、垃圾未入桶检测、垃圾桶满溢检测等算法,感兴趣的用户可以前往演示平台进行体验。

相关推荐
张彦峰ZYF10 分钟前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计
LYFlied13 分钟前
【每日算法】LeetCode 1143. 最长公共子序列
前端·算法·leetcode·职场和发展·动态规划
不易思不逸1 小时前
SAM2 测试
人工智能·python
长安er2 小时前
LeetCode 20/155/394/739/84/42/单调栈核心原理与经典题型全解析
数据结构·算法·leetcode·动态规划·
V1ncent_xuan2 小时前
坐标转化Halcon&Opencv
人工智能·opencv·计算机视觉
MarkHD2 小时前
智能体在车联网中的应用:第28天 深度强化学习实战:从原理到实现——掌握近端策略优化(PPO)算法
算法
咚咚王者2 小时前
人工智能之核心基础 机器学习 第一章 基础概述
人工智能·机器学习
StarChainTech2 小时前
电动车租赁中的智能管理:电子围栏技术如何改变出行行业
大数据·人工智能·微信小程序·小程序·团队开发·软件需求·共享经济
能源系统预测和优化研究2 小时前
【原创代码改进】考虑共享储能接入的工业园区多类型负荷需求响应经济运行研究
大数据·算法