matlab画相关系数图(长时序--分时期分月份)

成图如下:

a图为例子,纵坐标是1-12月,横坐标是不同的因子。如左下第一格表示的就是x1与AO因子在十二月的相关性。

(a/b/c是x1因子,d/e/f是x2因子)

首先要计算出每个相关系数(可以在SPSS中完成),然后将它们按矩阵型输入到excel中,如下:

接着在matlab中读入数据,直接画图:

Matlab 复制代码
corr = readtable('AONAODA.xls','Sheet','Sheet2');
A1 = table2array(corr(1:12,2:4));
A2 = table2array(corr(1:12,7:9));
A3 = table2array(corr(1:12,12:14));
A4 = table2array(corr(15:26,2:4));
A5 = table2array(corr(15:26,7:9));
A6 = table2array(corr(15:26,12:14));
% CMap=slanCM(102);
CMap=slanCM(95);


figure;
sub1 = subplot(2,3,1);
imagesc(A2);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub1,'Position', [0.06 0.58 0.22 0.38]);  %设置位置
txt = {'(a) 1984-2000'};
text(0.1,1,txt)

% yticklabels({'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'});

sub2 = subplot(2,3,2);
imagesc(A3);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub2,'Position', [0.36 0.58 0.22 0.38]);
txt = {'(b) 2001-2022'};
text(0.1,1,txt)

sub3 = subplot(2,3,3);
imagesc(A1);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
txt = {'(c) 1984-2022'};
text(0.1,1,txt)
pos=set(sub3,'Position', [0.66 0.58 0.22 0.38]);

sub4 = subplot(2,3,4);
imagesc(A5);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub4,'Position', [0.06 0.1 0.22 0.38]);
txt = {'(d) 1984-2000'};
text(0.1,1,txt)

sub5 = subplot(2,3,5);
imagesc(A6);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub5,'Position', [0.36 0.1 0.22 0.38]);
txt = {'(e) 2001-2022'};
text(0.1,1,txt)

sub6=subplot(2,3,6);
imagesc(A4);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub6,'Position', [0.66 0.1 0.22 0.38]);
txt = {'(f) 1984-2022'};
text(0.1,1,txt)

colormap(CMap);


h=colorbar('eastoutside','fontsize',12);
set(get(h,'Title'),'string','Corr','fontsize',9)
set(h,'YTick',-1:1:1,'fontsize',9);%设置colorbar单位
pos3=set(h,'Position', [0.92 0.1 0.022 0.85]);  %设置colorbar位置

上面的代码大部分都是重复的,只要弄懂第一个子图怎么画,后面的改变量就行。

(CMap是我下的颜色库,也可以用matlab自带的)

另外,多子图的colorbar的设置需要在最后单独写几行代码,可根据自己需求更改。

祝大家画出好看的图。

相关推荐
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
Matlab程序猿小助手15 小时前
【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。
开发语言·嵌入式硬件·算法·matlab·机器人
IT猿手19 小时前
基于卷积神经网络(CNN)的时间序列预测,15个输入1个输出,可以更改数据集,MATLAB代码
人工智能·深度学习·神经网络·算法·matlab·cnn
其实吧31 天前
基于MATLAB的运动车辆跟踪检测系统
开发语言·matlab
梦里水乡8571 天前
基于MATLAB的农业病虫害识别研究
开发语言·matlab
墨痕_7772 天前
论文阅读笔记Dense Passage Retrieval for Open-Domain Question Answering
matlab
真的是我22 天前
基于MATLAB课程设计-图像处理完整版
图像处理·人工智能·计算机视觉·matlab
顶呱呱程序3 天前
2-140 基于Solidworks和Matlab Simulink Simscape仿真的机器人手臂仿真
开发语言·matlab·机器人·simulink·simscape·机器人手臂仿真
ULTRA??3 天前
随机生成100组N个数并对比,C++,python,matlab,pair,std::piecewise_construct
开发语言·c++·python·matlab
陌夏微秋3 天前
硬件基础06 滤波器——无源、有源(含Filter Solutions、Filter Pro、MATLAB Fdatool)
matlab·硬件工程·信息与通信·信号处理