matlab画相关系数图(长时序--分时期分月份)

成图如下:

a图为例子,纵坐标是1-12月,横坐标是不同的因子。如左下第一格表示的就是x1与AO因子在十二月的相关性。

(a/b/c是x1因子,d/e/f是x2因子)

首先要计算出每个相关系数(可以在SPSS中完成),然后将它们按矩阵型输入到excel中,如下:

接着在matlab中读入数据,直接画图:

Matlab 复制代码
corr = readtable('AONAODA.xls','Sheet','Sheet2');
A1 = table2array(corr(1:12,2:4));
A2 = table2array(corr(1:12,7:9));
A3 = table2array(corr(1:12,12:14));
A4 = table2array(corr(15:26,2:4));
A5 = table2array(corr(15:26,7:9));
A6 = table2array(corr(15:26,12:14));
% CMap=slanCM(102);
CMap=slanCM(95);


figure;
sub1 = subplot(2,3,1);
imagesc(A2);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub1,'Position', [0.06 0.58 0.22 0.38]);  %设置位置
txt = {'(a) 1984-2000'};
text(0.1,1,txt)

% yticklabels({'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'});

sub2 = subplot(2,3,2);
imagesc(A3);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub2,'Position', [0.36 0.58 0.22 0.38]);
txt = {'(b) 2001-2022'};
text(0.1,1,txt)

sub3 = subplot(2,3,3);
imagesc(A1);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
txt = {'(c) 1984-2022'};
text(0.1,1,txt)
pos=set(sub3,'Position', [0.66 0.58 0.22 0.38]);

sub4 = subplot(2,3,4);
imagesc(A5);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub4,'Position', [0.06 0.1 0.22 0.38]);
txt = {'(d) 1984-2000'};
text(0.1,1,txt)

sub5 = subplot(2,3,5);
imagesc(A6);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub5,'Position', [0.36 0.1 0.22 0.38]);
txt = {'(e) 2001-2022'};
text(0.1,1,txt)

sub6=subplot(2,3,6);
imagesc(A4);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub6,'Position', [0.66 0.1 0.22 0.38]);
txt = {'(f) 1984-2022'};
text(0.1,1,txt)

colormap(CMap);


h=colorbar('eastoutside','fontsize',12);
set(get(h,'Title'),'string','Corr','fontsize',9)
set(h,'YTick',-1:1:1,'fontsize',9);%设置colorbar单位
pos3=set(h,'Position', [0.92 0.1 0.022 0.85]);  %设置colorbar位置

上面的代码大部分都是重复的,只要弄懂第一个子图怎么画,后面的改变量就行。

(CMap是我下的颜色库,也可以用matlab自带的)

另外,多子图的colorbar的设置需要在最后单独写几行代码,可根据自己需求更改。

祝大家画出好看的图。

相关推荐
yong99902 小时前
MATLAB的智能扫地机器人工作过程仿真
开发语言·matlab·机器人
jghhh013 小时前
基于MATLAB的协同过滤推荐算法实现
开发语言·matlab·推荐算法
啊阿狸不会拉杆4 小时前
《数字信号处理》第6章:数字滤波器的基本概念及几种特殊滤波器
算法·matlab·信号处理·数字信号处理·dsp
软件算法开发5 小时前
基于卷尾猴优化的LSTM深度学习网络模型(CSA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·matlab·lstm·一维时间序列预测·卷尾猴优化·csa-lstm
机器学习之心5 小时前
MATLAB基于GA-ELM与NSGA-Ⅱ算法的42CrMo表面激光熔覆参数多目标优化
算法·matlab·ga-elm
yuan199976 小时前
高光谱遥感图像异常检测KRX算法Matlab实现
算法·机器学习·matlab
啊阿狸不会拉杆6 小时前
《数字信号处理》第9章:序列的抽取与插值——多抽样率数字信号处理基础
算法·matlab·信号处理·数字信号处理·dsp
果粒蹬i6 小时前
从割裂到融合:MATLAB与Python混合编程实战指南
开发语言·汇编·python·matlab
啊阿狸不会拉杆7 小时前
《数字信号处理》第10章-数字信号处理中的有限字长效应
算法·matlab·fpga开发·信号处理·数字信号处理·dsp
啵啵鱼爱吃小猫咪7 小时前
机器人几何雅可比与解析雅可比
人工智能·学习·算法·机器学习·matlab·机器人