matlab画相关系数图(长时序--分时期分月份)

成图如下:

a图为例子,纵坐标是1-12月,横坐标是不同的因子。如左下第一格表示的就是x1与AO因子在十二月的相关性。

(a/b/c是x1因子,d/e/f是x2因子)

首先要计算出每个相关系数(可以在SPSS中完成),然后将它们按矩阵型输入到excel中,如下:

接着在matlab中读入数据,直接画图:

Matlab 复制代码
corr = readtable('AONAODA.xls','Sheet','Sheet2');
A1 = table2array(corr(1:12,2:4));
A2 = table2array(corr(1:12,7:9));
A3 = table2array(corr(1:12,12:14));
A4 = table2array(corr(15:26,2:4));
A5 = table2array(corr(15:26,7:9));
A6 = table2array(corr(15:26,12:14));
% CMap=slanCM(102);
CMap=slanCM(95);


figure;
sub1 = subplot(2,3,1);
imagesc(A2);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub1,'Position', [0.06 0.58 0.22 0.38]);  %设置位置
txt = {'(a) 1984-2000'};
text(0.1,1,txt)

% yticklabels({'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'});

sub2 = subplot(2,3,2);
imagesc(A3);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub2,'Position', [0.36 0.58 0.22 0.38]);
txt = {'(b) 2001-2022'};
text(0.1,1,txt)

sub3 = subplot(2,3,3);
imagesc(A1);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
txt = {'(c) 1984-2022'};
text(0.1,1,txt)
pos=set(sub3,'Position', [0.66 0.58 0.22 0.38]);

sub4 = subplot(2,3,4);
imagesc(A5);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub4,'Position', [0.06 0.1 0.22 0.38]);
txt = {'(d) 1984-2000'};
text(0.1,1,txt)

sub5 = subplot(2,3,5);
imagesc(A6);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub5,'Position', [0.36 0.1 0.22 0.38]);
txt = {'(e) 2001-2022'};
text(0.1,1,txt)

sub6=subplot(2,3,6);
imagesc(A4);
caxis([-1 1]);
xticklabels({'AO','NAO','DA'});
yticks([1:2:12]);
yticklabels({'Jan','Mar','May','Jul','Sep','Nov'});
pos=set(sub6,'Position', [0.66 0.1 0.22 0.38]);
txt = {'(f) 1984-2022'};
text(0.1,1,txt)

colormap(CMap);


h=colorbar('eastoutside','fontsize',12);
set(get(h,'Title'),'string','Corr','fontsize',9)
set(h,'YTick',-1:1:1,'fontsize',9);%设置colorbar单位
pos3=set(h,'Position', [0.92 0.1 0.022 0.85]);  %设置colorbar位置

上面的代码大部分都是重复的,只要弄懂第一个子图怎么画,后面的改变量就行。

(CMap是我下的颜色库,也可以用matlab自带的)

另外,多子图的colorbar的设置需要在最后单独写几行代码,可根据自己需求更改。

祝大家画出好看的图。

相关推荐
超级大咸鱼7 小时前
verilog利用线性插值实现正弦波生成器(dds)
matlab·fpga·dds·线性插值
Mason Lin1 天前
2025年3月29日(matlab -ss -lti)
开发语言·matlab
Qian_ShouYi2 天前
MATLAB 代码学习
学习·算法·matlab
斯汤雷2 天前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
鹿屿二向箔2 天前
阀门流量控制系统MATLAB仿真PID
开发语言·matlab
没有黑科技2 天前
0.雷达信号
matlab
QQ__17646198243 天前
Matlab安装tdms插件
开发语言·matlab·tdms插件
天`南3 天前
【三维异构Dvhop定位】基于灰狼优化算法的三维异构Dvhop定位算法【Matlab代码#93】
matlab·dvhop·异构无线传感器网络
小白狮ww3 天前
Retinex 算法 + MATLAB 软件,高效率完成图像去雾处理
开发语言·人工智能·算法·matlab·自然语言处理·图像识别·去雾处理
机器学习之心3 天前
区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
matlab·回归·cnn·分位数回归·时间卷积神经网络·qrtcn·区间预测模型