吴恩达机器学习笔记:第 8 周-13 聚类(Clustering)13.3-13.5

目录

  • [第 8 周 13、 聚类(Clustering)](#第 8 周 13、 聚类(Clustering))
    • [13.3 优化目标](#13.3 优化目标)

第 8 周 13、 聚类(Clustering)

13.3 优化目标

K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为:
J ( c ( 1 ) , . . . , c ( m ) , u 1 , . . . , u k ) = 1 m ∑ i = 1 m ∣ ∣ X ( i ) − u c ( i ) ∣ ∣ 2 J(c^{(1)},...,c^{(m)},u_1,...,u_k) =\frac{1}{m}\sum_{i=1}^m{||X^{(i)} - u_c^{(i)}||^2} J(c(1),...,c(m),u1,...,uk)=m1i=1∑m∣∣X(i)−uc(i)∣∣2

其中 u c ( i ) u_c^{(i)} uc(i)代表与 x ( i ) x^{(i)} x(i)最近的聚类中心点。 我们的的优化目标便是找出使得代价函数最小的 c ( 1 ) , c ( 2 ) , . . . , c ( m ) c^{(1)},c^{(2)},...,c^{(m)} c(1),c(2),...,c(m)和 u 1 , u 2 , . . . , u k u_1,u_2,...,u_k u1,u2,...,uk:

回顾刚才给出的: K-均值迭代算法,我们知道,第一个循环是用于减小 c ( i ) c^{(i)} c(i)引起的代价,而第二个循环则是用于减小 u i u_i ui引起的代价。迭代的过程一定会是每一次迭代都在减小代价函数,不然便是出现了错误。

相关推荐
快乐点吧10 分钟前
【MongoDB + Spark】 技术问题汇总与解决方案笔记
笔记·mongodb·spark
云天徽上31 分钟前
【数据可视化-27】全球网络安全威胁数据可视化分析(2015-2024)
人工智能·安全·web安全·机器学习·信息可视化·数据分析
硅谷秋水1 小时前
ORION:通过视觉-语言指令动作生成的一个整体端到端自动驾驶框架
人工智能·深度学习·机器学习·计算机视觉·语言模型·自动驾驶
小墙程序员1 小时前
机器学习入门(一)什么是机器学习
机器学习
豆芽8191 小时前
强化学习(Reinforcement Learning, RL)和深度学习(Deep Learning, DL)
人工智能·深度学习·机器学习·强化学习
山北雨夜漫步1 小时前
机器学习 Day14 XGboost(极端梯度提升树)算法
人工智能·算法·机器学习
宁酱醇2 小时前
各种各样的bug合集
开发语言·笔记·python·gitlab·bug
DKPT2 小时前
正则表达式
java·数据库·笔记·学习·正则表达式
yzx9910132 小时前
集成学习实际案例
人工智能·机器学习·集成学习
zhuyixiangyyds2 小时前
day36图像处理OpenCV
图像处理·笔记·学习