吴恩达机器学习笔记:第 8 周-13 聚类(Clustering)13.3-13.5

目录

  • [第 8 周 13、 聚类(Clustering)](#第 8 周 13、 聚类(Clustering))
    • [13.3 优化目标](#13.3 优化目标)

第 8 周 13、 聚类(Clustering)

13.3 优化目标

K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为:
J ( c ( 1 ) , . . . , c ( m ) , u 1 , . . . , u k ) = 1 m ∑ i = 1 m ∣ ∣ X ( i ) − u c ( i ) ∣ ∣ 2 J(c^{(1)},...,c^{(m)},u_1,...,u_k) =\frac{1}{m}\sum_{i=1}^m{||X^{(i)} - u_c^{(i)}||^2} J(c(1),...,c(m),u1,...,uk)=m1i=1∑m∣∣X(i)−uc(i)∣∣2

其中 u c ( i ) u_c^{(i)} uc(i)代表与 x ( i ) x^{(i)} x(i)最近的聚类中心点。 我们的的优化目标便是找出使得代价函数最小的 c ( 1 ) , c ( 2 ) , . . . , c ( m ) c^{(1)},c^{(2)},...,c^{(m)} c(1),c(2),...,c(m)和 u 1 , u 2 , . . . , u k u_1,u_2,...,u_k u1,u2,...,uk:

回顾刚才给出的: K-均值迭代算法,我们知道,第一个循环是用于减小 c ( i ) c^{(i)} c(i)引起的代价,而第二个循环则是用于减小 u i u_i ui引起的代价。迭代的过程一定会是每一次迭代都在减小代价函数,不然便是出现了错误。

相关推荐
lkbhua莱克瓦241 小时前
Java基础——常用算法4
java·数据结构·笔记·算法·github·排序算法·快速排序
云雾J视界1 小时前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类
学渣676561 小时前
11111
笔记
MeowKnight9581 小时前
【DIY】PCB练习记录2——51单片机核心板
笔记
极客学术工坊4 小时前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
Theodore_10225 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
tjsoft8 小时前
网站如何被百度收录之探索笔记
笔记
极客学术工坊9 小时前
2022年第十二届MathorCup高校数学建模挑战赛-D题 移动通信网络站址规划和区域聚类问题
机器学习·数学建模·启发式算法·聚类
QT 小鲜肉10 小时前
【个人成长笔记】在 Linux 系统下撰写老化测试脚本以实现自动压测效果(亲测有效)
linux·开发语言·笔记·单片机·压力测试
MeowKnight95810 小时前
【Qt】Qt实践记录2——TCP通信服务器和客户端demo
笔记·qt