Multiprocessing Event Object In Python

Need for an Event Object

A process is a running instance of a computer program.

Every Python program is executed in a Process, which is a new instance of the Python interpreter. This process has the name MainProcess and has one thread used to execute the program instructions called the MainThread. Both processes and threads are created and managed by the underlying operating system.

Sometimes we may need to create new child processes in our program in order to execute code concurrently.

Python provides the ability to create and manage new processes via the multiprocessing.Process class.

You can learn more about multiprocessing in the tutorial:

In concurrent programming, sometimes we need to coordinate processes with a boolean variable. This might be to trigger an action or signal some result.

This could be achieved with a mutual exclusion lock (mutex) and a boolean variable, but provides no way for processes to wait for the variable to be set True.

Instead, this can be achieved using an event object.

What is an event object and how can we use it with processes in Python?

Example of Using a Shared Event with Processes

We can explore how to use a multiprocessing.Event object.

In this example we will create a suite of processes that each will perform some processing and report a message. All processes will use an event to wait to be set before starting their work. The main process will set the event and trigger the child processes to start work.

First, we can define a target task function that takes the shared multiprocessing.Event instance and a unique integer to identify the process.

|-------|-------------------------------------------------------|
| 1 2 3 | # target task function def task(event, number): # ... |

Next, the function will wait for the event to be set before starting the processing work.

|---------|---------------------------------------------------------------------------------------------------|
| 1 2 3 4 | ... # wait for the event to be set print(f'Process {number} waiting...', flush=True) event.wait() |

Once triggered, the process will generate a random number, block for a moment and report a message.

|-----------|---------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 | ... # begin processing value = random() sleep(value) print(f'Process {number} got {value}', flush=True) |

Tying this together, the complete target task function is listed below.

|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 | # target task function def task(event, number): # wait for the event to be set print(f'Process {number} waiting...', flush=True) event.wait() # begin processing value = random() sleep(value) print(f'Process {number} got {value}', flush=True) |

The main process will first create the shared multiprocessing.Event instance, which will be in the "not set" state by default.

|-------|----------------------------------------------------|
| 1 2 3 | ... # create a shared event object event = Event() |

Next, we can create and configure five new processes specifying the target task() function with the event object and a unique integer as arguments.

This can be achieved in a list comprehension.

|-------|-----------------------------------------------------------------------------------------------------------|
| 1 2 3 | ... # create a suite of processes processes = [Process(target=task, args=(event, i)) for i in range(5)] |

We can then start all child processes.

|---------|---------------------------------------------------------------------|
| 1 2 3 4 | ... # start all processes for process in processes: process.start() |

Next, the main process will block for a moment, then trigger the processing in all of the child processes via the event object.

|-------------|---------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 | ... # block for a moment print('Main process blocking...') sleep(2) # trigger all child processes event.set() |

The main process will then wait for all child processes to terminate.

|---------|------------------------------------------------------------------------------------------|
| 1 2 3 4 | ... # wait for all child processes to terminate for process in processes: process.join() |

Tying this all together, the complete example is listed below.

|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | # SuperFastPython.com # example of using an event object with processes from time import sleep from random import random from multiprocessing import Process from multiprocessing import Event # target task function def task(event, number): # wait for the event to be set print(f'Process {number} waiting...', flush=True) event.wait() # begin processing value = random() sleep(value) print(f'Process {number} got {value}', flush=True) # entry point if name == 'main': # create a shared event object event = Event() # create a suite of processes processes = [Process(target=task, args=(event, i)) for i in range(5)] # start all processes for process in processes: process.start() # block for a moment print('Main process blocking...') sleep(2) # trigger all child processes event.set() # wait for all child processes to terminate for process in processes: process.join() |

Running the example first creates and starts five child processes.

Each child process waits on the event before it starts its work, reporting a message that it is waiting.

The main process blocks for a moment, allowing all child processes to begin and start waiting on the event.

The main process then sets the event. This triggers all five child processes that perform their simulated work and report a message.

Note, your specific results will differ given the use of random numbers.

|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 | Main process blocking... Process 0 waiting... Process 1 waiting... Process 2 waiting... Process 3 waiting... Process 4 waiting... Process 0 got 0.06198821143561384 Process 4 got 0.219334069761699 Process 3 got 0.7335552378594119 Process 1 got 0.7948771419640999 Process 2 got 0.8713839353896263 |

Further Reading

This section provides additional resources that you may find helpful.

Python Multiprocessing Books

I would also recommend specific chapters in the books:

Guides

APIs

References

Overwhelmed by the python concurrency APIs?

Find relief, download my FREE Python Concurrency Mind Maps

Takeaways

You now know how to use a multiprocessing.Event Object in Python

Do you have any questions?

Ask your questions in the comments below and I will do my best to answer


相关推荐
深度学习入门4 分钟前
机器学习,深度学习,神经网络,深度神经网络之间有何区别?
人工智能·python·深度学习·神经网络·机器学习·机器学习入门·深度学习算法
TNTLWT5 分钟前
Qt控件:交互控件
开发语言·qt
量化金策8 分钟前
震荡指标工具
开发语言
北漂老男孩10 分钟前
ChromeDriver进程泄漏问题分析与最佳实践解决方案
开发语言·爬虫
神经毒素14 分钟前
WEB安全--Java安全--shiro550反序列化漏洞
java·安全·web安全·shiro
李迟15 分钟前
Golang实践录:在go中使用curl实现https请求
开发语言·golang·https
hnlucky27 分钟前
Windows 上安装下载并配置 Apache Maven
java·hadoop·windows·学习·maven·apache
森哥的歌1 小时前
Python uv包管理器使用指南:从入门到精通
python·开发工具·uv·虚拟环境·包管理
qq_214782611 小时前
给你的matplotlib images添加scale Bar
python·数据分析·matplotlib
Johny_Zhao1 小时前
Vmware workstation安装部署微软SCCM服务系统
网络·人工智能·python·sql·网络安全·信息安全·微软·云计算·shell·系统运维·sccm