rerank来提升RAG的准确度的策略

RAG(Retrieval-Augmented Generation)是一种结合检索和生成两种技术的模型,旨在通过检索大规模知识库来增强文本生成任务的准确性。

要通过reranking(重排序)来提升RAG的准确度,可以采取以下策略:

  1. 使用更精细的评分函数

RAG通常会在检索阶段根据输入问题或上下文生成一系列候选文档,然后利用这些文档的信息进行生成式回答。

reranking可以通过设计更精细的评分函数,对这些候选文档进行重新排序,优先选择与输入问题更相关、质量更高的文档作为生成回答的依据。

这可能涉及:

融合更多特征:除了原始的检索得分(如BM25分数),考虑加入其他特征,如文档长度、主题相关性、实体提及次数、段落位置等,以更全面地评估文档与问题的匹配程度。

引入深度学习模型:使用预训练的语言模型(如BERT、RoBERTa等)计算问题与文档的语义相似度,或者使用专门针对文档相关性设计的模型(如ANCE、DPR等)进行reranking。

考虑上下文敏感性:对于多轮对话或具有明确上下文的场景,评分函数应考虑上下文信息,确保所选文档不仅与当前问题相关,还与对话历史或上下文保持一致。

  1. 集成外部知识

在reranking阶段,可以引入外部知识源(如百科、词典、专家规则等)来辅助判断文档的质量和相关性。例如:

利用领域专业知识:对于特定领域的应用,如医疗、法律、金融等,可以利用领域知识库或规则库来筛选出符合专业要求的文档。

利用常识知识:使用常识推理模型或知识图谱来判断文档内容是否符合常识,避免生成不符合事实的回答。

  1. 采用多阶段reranking

将reranking过程分为多个阶段,逐步精细化文档排序:

粗排阶段:首先基于简单、高效的指标(如BM25得分)进行初步排序,筛选出一部分高潜力文档。

精排阶段:对粗排后的文档集使用更复杂的评分函数或模型进行二次排序,进一步提升相关文档的优先级。

微调阶段(可选):对于某些关键应用场景,可以加入人工规则或专家干预的微调阶段,确保最终选择的文档满足特定业务需求。

  1. 在线学习与反馈循环

在实际部署中,收集用户反馈(如点击率、满意度评分等)来不断优化reranking策略:

在线学习:利用在线学习算法(如Bandit算法、强化学习等)动态调整评分函数参数,使其适应用户行为变化。

主动学习:在保证用户体验的前提下,适时向用户询问对生成答案的满意度,收集标注数据用于模型迭代。

通过上述策略的综合运用,可以有效地通过reranking提升RAG模型在文本生成任务中的准确度。

请注意,具体的实现方式需根据实际应用场景、数据资源和计算资源进行调整。

Video:AI 新视界

Tool:Llama3 在线Gemma在线ChatAIlist

Link:https://www.cnblogs.com/farwish/p/18156488

相关推荐
陈果然DeepVersion8 小时前
Java大厂面试真题:Spring Boot+Kafka+AI智能客服场景全流程解析(十)
java·spring boot·ai·kafka·面试题·向量数据库·rag
寒某9 小时前
在Windows上部署RAGFlow
windows·ai
Elastic 中国社区官方博客11 小时前
通过混合搜索重排序提升多语言嵌入模型的相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
大千AI助手11 小时前
探索LoSA:动态低秩稀疏自适应——大模型高效微调的新突破
人工智能·神经网络·lora·大模型·llm·大千ai助手·稀疏微调
tokepson13 小时前
chatgpt-to-md优化并重新复习
python·ai·技术·pypi·记录
MrSYJ14 小时前
可以指定 Jupyter Notebook 使用的虚拟环境吗
python·llm·agent
智泊AI14 小时前
一文讲清:传统RAG和Agentic RAG实战差异
llm
大模型教程15 小时前
大模型“进修深造”(Fine-tuning):用微调打造“懂行”的智能客服
程序员·llm·agent
大模型教程15 小时前
30分钟内搞定!在本地电脑上部署属于你自己的大模型
llm·agent·ollama
武子康15 小时前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr