论文笔记:Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

iclr 2024 reviewer 评分 3888

1 方法

  • 提出了 Time-LLM,
    • 是一个通用的大模型重编程(LLM Reprogramming)框架
    • 将 LLM 轻松用于一般时间序列预测,而无需对大语言模型本身做任何训练

为什么需要时序数据和文本数据对齐:时序数据和文本数据在表达方式上存在显著差异,两者属于不同的模态。时间序列既不能直接编辑,也不能无损地用自然语言描述

3 实验

3.1 实验结果

3.2 few-shot 实验结果

3.3 zero-shot 结果

3.4 ablation study

相关推荐
minstbe2 分钟前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
月眠老师5 分钟前
AI在生活各处的利与弊
人工智能
四口鲸鱼爱吃盐20 分钟前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类
苏言の狗22 分钟前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
bastgia1 小时前
Tokenformer: 下一代Transformer架构
人工智能·机器学习·llm
菜狗woc1 小时前
opencv-python的简单练习
人工智能·python·opencv
15年网络推广青哥1 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
weixin_387545642 小时前
探索 AnythingLLM:借助开源 AI 打造私有化智能知识库
人工智能
engchina2 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin3 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net