论文笔记:Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

iclr 2024 reviewer 评分 3888

1 方法

  • 提出了 Time-LLM,
    • 是一个通用的大模型重编程(LLM Reprogramming)框架
    • 将 LLM 轻松用于一般时间序列预测,而无需对大语言模型本身做任何训练

为什么需要时序数据和文本数据对齐:时序数据和文本数据在表达方式上存在显著差异,两者属于不同的模态。时间序列既不能直接编辑,也不能无损地用自然语言描述

3 实验

3.1 实验结果

3.2 few-shot 实验结果

3.3 zero-shot 结果

3.4 ablation study

相关推荐
夏天是冰红茶2 小时前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩5 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3935 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99905 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1235 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见6 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A6 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR6 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383127 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
JoannaJuanCV7 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla