Redis系列:HyperLogLog实现海量数据基数统计

1 前言

我们来回顾下在这个系列的篇 深刻理解高性能Redis的本质 中介绍过Redis的几种基本数据结构,

它服务于各种不同的业务场景而设计的,比如:

  • 动态字符串(REDIS_STRING):整数(REDIS_ENCODING_INT)、字符串(REDIS_ENCODING_RAW)
  • 双端列表(REDIS_ENCODING_LINKEDLIST)
  • 压缩列表(REDIS_ENCODING_ZIPLIST)
  • 跳跃表(REDIS_ENCODING_SKIPLIST)
  • 哈希表(REDIS_HASH)
  • 整数集合(REDIS_ENCODING_INTSET)

除了这些常见数据类型,还有一些不常用的数据类型,如 BitMap、Geo、HyperLogLog 等等,他们在各自的方向为不同的类型的数据统计给出解决方案。

  • 位图(BitMap)计算:可以应用于任何大数据场景下的二值计算,比如 是否登录、是否在线、是否签到、用户性别状态、IP黑名单、是否VIP用户统计 等等场景。
  • Geo类型:记录地理空间信息,如 地理坐标存储、位置计算、距离计算等能力,普遍运用在地图业务中的各种场景。

这一篇我们来介绍下HyperLogLog,HyperLogLog 主要用于Redis基数的统计,比如IP统计,用户访问量,页面访问量。

2 关于HyperLogLog

HyperLogLog 主要用于Redis 的基数统计,它的数据结构专门设计用来做数据合并和计算,并能节省大量的空间。

基数计数( cardinality counting) 通常用来统计一个集合中不重复的元素个数 , 例如统计某个网站的UV、PV或者网站搜索的的关键词数量。

在各种应用领域基数统计被广泛应用,如数据分析、网络监控指标、存储性能优化等。

简单来说,基数计数就是记录集合中所有不重复的元素Su ,当新增元素Xa时,判断Su中是否包含,不包含则将其加入Su,包含则不加入,计数值就是Su 的元素数量总和。

当然这种做法也存在两个问题:

2.2 高效和海量特性

如果我们使用普通集合,也能够实现对巨量数据的存储和统计么,但是存储量会大很多,性能也比较差。

以百度搜索为例,如果要做百度指数的计算,针对来访IP进行统计。那么如果每天 有 1000 万 IP,一个 IP 占位 15 字节,那么 1000 万个 IP 就是 143M。

  1. 当统计的数据量变大时,相应的存储内存也会线性增长

  2. 当集合Su 变大,判断其是否包含新加入元素的成本变大

    2.1 实际应用场景

    很多计数类场景,比如 每日注册 IP 数、每日访问 IP 数、页面实时访问数 PV、访问用户数 UV等。

    因为主要的目标高效、巨量地进行计数,所以对存储的数据的内容并不关系。也就是说它只能用于统计数量,没办法知道具体的统计对象的内容。

  3. 统计单日一个页面的访问量(PV),单次访问就算一次。

  4. 统计单日一个页面的用户访问量(UV),即按照用户为维度计算,单个用户一天内多次访问也只算一次。

  5. 多个key的合并统计,某个门户网站的所有模块的PV聚合统计就是整个网站的总PV。

    10,000,000 * 15 /(1024 * 1024) = 143.05 M

如果使用 HyperLogLog ,那么在 Redis 中每个键占用的内容都是 12K,理论上能够存储 264 个值,即18446744073709551616,这个数是巨量,Java中long类型也只能计算到 262 。

无论存储何值,它一个基于基数估算的算法HyperLogLog Counting(简称HLLC),使用少量固定的内存去存储并识别集合中的唯*一元素。

HLLC采用了分桶平均的思想来消减误差,在Redis中, 有16384个桶 。而HyperLogLog的标准偏差公式是1.04 / sqrt(m),m 为桶的个数。所以

复制代码
1.04 / sqrt(16384) = 1.04 / 128 = 0.008125 

所以这个计数的估算,是一个带有 0.81% 标准偏差的近似值。

3 HyperLogLog所支持的能力

HyperLogLog数据结构的命令有三个:PFADD、PFCOUNT、PFMERGE

3.1 PFADD 添加计数

Redis Pfadd 命令将所有元素添加到 HyperLogLog 数据结构中。

语法如下:

复制代码
redis > PFADD key element [element ...]

下面举例了网站统计模块添加IP的两种情况

复制代码
/* 对访问百度网站(key=baidu:ip_address)的IP进行添加 */
redis> PFADD baidu:ip_address "192.168.0.1" "192.168.0.2" "192.168.0.3"
(integer) 1
 
/* 如果IP已经存在,则进行忽略,不对估计数量进行更新 */
redis> PFADD baidu:ip_address "192.168.0.3"  
(integer)   # IP已经存在

3.2 PFCOUNT 统计数量

Redis Pfcount 命令返回给定 HyperLogLog 的基数的估算值。

语法如下:

复制代码
redis > PFCOUNT key [key ...]

下面估算了访问IP的基数的值,返回 1034546 。

复制代码
redis> PFCOUNT baidu:ip_address
 
(integer) 1034546

3.3 PFMERGE 合并统计

Redis PFMERGE 命令将多个 HyperLogLog 合并为一个 HyperLogLog ,合并后的 HyperLogLog 的基数估算值是对给定 HyperLogLog 进行并集计算得出的。

所以有重复的会被统计成一条数据。

合并得出的 HyperLogLog 会被储存在 destkey 键里面, 如果该键并不存在,那么命令在执行之前, 会先为该键创建一个空的 HyperLogLog 。

语法如下:

复制代码
redis > PFMERGE destkey sourcekey [sourcekey ...]

下面演示了合并和统计的过程:

复制代码
/* 统计百度 baidu:ip_address 访问IP */
redis> PFADD baidu:ip_address "192.168.0.1" "192.168.0.2" "192.168.0.3"
(integer) 1
 
 /* 统计淘宝 taobao:ip_address 访问IP */
redis> PFADD taobao:ip_address "192.168.0.3" "192.168.0.4" "192.168.0.5"
(integer) 1
 
/* 合并且去重之后放在 total:ip_address  */
redis> PFMERGE total:ip_address baidu:ip_address taobao:ip_address
OK
 
/* 结果为5 */
redis> PFCOUNT total:ip_address
(integer) 5

4 总结

基数计数是用于统计一个集合中不重复的元素个数,好比平常需求场景有,统计页面的UV或者统计在线的用户数、注册IP数等。HyperLogLog 主要基于Redis能力下的基数统计。HyperLogLog的主要使用场景包括:

  1. 统计单日一个页面的访问量(PV),单次访问就算一次。
  2. 统计单日一个页面的用户访问量(UV),即按照用户为维度计算,单个用户一天内多次访问也只算一次。
  3. 多个key的合并统计,某个门户网站的所有模块的PV聚合统计就是整个网站的总PV。
相关推荐
邴越几秒前
不同向量数据库(FAISS / Pinecone / Weaviate)在 RAG 中的优缺点
数据库·faiss
Allen Bright1 分钟前
【MySQL基础-21】MySQL事务机制详解:原理、实现与最佳实践
数据库·mysql
movie__movie16 分钟前
Spring AI MCP 客户端实战:轻松连接高德地图等工具
数据库·人工智能·spring
清风198118 分钟前
kafka消息可靠性传输语义
数据库·分布式·kafka
数据智能老司机3 小时前
CockroachDB权威指南——SQL调优
数据库·分布式·架构
数据智能老司机3 小时前
CockroachDB权威指南——应用设计与实现
数据库·分布式·架构
数据智能老司机3 小时前
CockroachDB权威指南——CockroachDB 模式设计
数据库·分布式·架构
数据智能老司机21 小时前
CockroachDB权威指南——CockroachDB SQL
数据库·分布式·架构
数据智能老司机1 天前
CockroachDB权威指南——开始使用
数据库·分布式·架构
松果猿1 天前
空间数据库学习(二)—— PostgreSQL数据库的备份转储和导入恢复
数据库