YOLOv8 实现车牌检测,生成可视化检测视频(20240424)

原项目源码地址:GitHub

我的源码地址:Gitee

环境搭建请参考:Win10 搭建 YOLOv8 运行环境(20240423)-CSDN博客

环境测试请参考:本地运行测试 YOLOv8(20240423)-CSDN博客

训练数据集请参考:YOLOv8 训练自己的数据集(20240423)-CSDN博客

一、在 Anacoda 下创建一个新的虚拟环境

1.1、创建虚拟环境 automatic_plate

bash 复制代码
conda create --n automatic_plate python=3.9.16

1.2、切换激活虚拟环境

bash 复制代码
conda activate automatic_plate

1.3、安装 PyTorch

bash 复制代码
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

二、下载代码,配置依赖

2.1、下载源码:

bash 复制代码
git clone https://gitee.com/nangongyanya/yolov8_automatic_plate.git

2.2、使用 PyCharm 打开项目

2.3、配置 Python 环境为前文中创建的虚拟环境 automatic_plate

2.4、打开命令行工具

2.5、添加依赖

bash 复制代码
pip install -r requirements.txt

2.6、修改 Pillow 版本为 9.5.0

2.7、运行 main.py 生成车辆和车牌的识别信息,保存至 tmp.csv

三、完善可视化视频

3.1、我们可以查看一下 tmp.csv 文件,会发现有些帧数没有,这是由于视频中不是每一帧都有车牌出现,而 tmp.csv 文件中有只保存了有检测到车牌的信息,因此有些帧数没有

3.2、运行 frame_interpolated.py 补全帧数生成具有完整帧数的数据文件 frame_interpolated.csv

3.3、运行 csv2video.py 根据原视频 sample.mp4 和 frame_interpolated.csv 生成完整的检测视频 out.mp4

相关推荐
王锋(oxwangfeng)2 小时前
YOLOWorld 实现开集障碍物检测
yolo
喵叔哟2 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
饭饭大王6662 小时前
CANN 生态深度整合:使用 `pipeline-runner` 构建高吞吐视频分析流水线
人工智能·音视频
晚霞的不甘4 小时前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频
愚公搬代码4 小时前
【愚公系列】《AI短视频创作一本通》016-AI短视频的生成(AI短视频运镜方法)
人工智能·音视频
那个村的李富贵5 小时前
CANN赋能AIGC“数字人”革命:实时视频换脸与表情驱动实战
aigc·音视频
晚霞的不甘5 小时前
CANN 支持强化学习:从 Isaac Gym 仿真到机械臂真机控制
人工智能·神经网络·架构·开源·音视频
晚霞的不甘9 小时前
CANN 支持多模态大模型:Qwen-VL 与 LLaVA 的端侧部署实战
人工智能·神经网络·架构·开源·音视频
2501_9413331017 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
拾荒的小海螺18 小时前
开源项目:LTX2 高效可控的开源视频生成模型
开源·音视频