【数据结构|C语言版】算法效率和复杂度分析

  • 前言
  • [1. 算法效率](#1. 算法效率)
  • [2. 大O的渐进表示法](#2. 大O的渐进表示法)
  • [3. 时间复杂度](#3. 时间复杂度)
    • [3.1 时间复杂度概念](#3.1 时间复杂度概念)
    • [3.2 时间复杂度计算举例](#3.2 时间复杂度计算举例)
  • [4. 空间复杂度](#4. 空间复杂度)
    • [4.1 空间复杂度的概念](#4.1 空间复杂度的概念)
    • [4.2 空间复杂度计算举例](#4.2 空间复杂度计算举例)
  • [5. 常见复杂度对比](#5. 常见复杂度对比)
  • 结语

个人主页:C_GUIQU

个人专栏:【数据结构(C语言版)学习】


前言

各位小伙伴大家好!初学数据结构之时,时间复杂度和空间复杂度当属重要基础。

下面,小编对其进行讲解!

1. 算法效率

【概念分类】时间效率和空间效率

时间复杂度主要衡量的是一个算法的运行次数。

空间复杂度主要衡量一个算法所需要的额外空间。

【总结】衡量一个算法的好坏,就是从时间和空间这两个维度来衡量。

2. 大O的渐进表示法

实际中,我们计算时间复杂度并不需要计算准确的执行次数,只需要计算大概执行次数,正常我们用大O的渐进表示法去计算。

【大O符号】用于描述函数渐进行为的数学符号。

【方法】

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

【算法的时间复杂度存在最好、平均和最坏情况】

  • 最坏情况:任意输入规模的最多运行次数
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最少运行次数

3. 时间复杂度

3.1 时间复杂度概念

【概念】算法中基本操作的执行次数,为算法的时间复杂度。

  • 时间复杂度是一个函数。
  • 定量描述了该算法的运行时间的次数。
  • 算法花费的时间与其中语句的执行次数成正比。

3.2 时间复杂度计算举例

【示例1】

c 复制代码
// 请计算一下Func1基本操作执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)    // 第一段
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)   // 第二段
	{
		++count;
	}
	int M = 10;
	while (M--)       // 第三段
	{
		++count;
	}
	printf("%d\n", count);
}

【分析】

第一段嵌套for循坏执行次数是就是 N * N

第二段for循坏执行次数是 2 * N

第三段while循环执行次数是10到0

所以F(N) = N² + 2 * N + 10

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N²)

【示例2】

c 复制代码
// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

【分析】

k = 0,k要递增到 k = 2 * N,才能结束

m = 10;要执行10次

所以精确执行次数是2N + 10

大O渐进表示法表示时间复杂度为O(N)

【示例3】

c 复制代码
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

【分析】

第一个for循环k = 0,k < M,需要执行M次才能结束

第二个for循环k = 0,k < N,需要执行N次才能结束

①M和N不确定谁大情况下,时间复杂度是O(M + N)

②M和N相等,时间复杂度是O(M) 或者 O(N)

③M远大于N,时间复杂度是O(M)

④N远大于M,时间复杂度是O(N)

4. 空间复杂度

4.1 空间复杂度的概念

【概念】对一个算法在运行过程中临时额外占用存储空间大小的量度 。

  • 空间复杂度不是程序占用 了多少bytes的空间,空间复杂度计算的是变量的个数。
  • 空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。
  • 空间复杂度主要通过函数运行时显式申请的额外空间来确定。
  • 一个程序运行需要额外定义变量个数。

4.2 空间复杂度计算举例

【示例1】

c 复制代码
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

【分析】

有三个变量临时分别是exchange,i,end,一共3个额外的空间

i在第二层循环里,这个循环要执行n次

每次输出刚进循环的i,地址都是一样的

所以,空间复杂度是O(1)

【示例2】

c 复制代码
// 计算Fibonacci的空间复杂度?
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

【分析】

开辟了一块n+1的个数的数组空间

省略掉一些不影响的项数

i和上面冒泡一样都是同一个空间

所以,空间复杂度是O(N)

【示例3】

c 复制代码
// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{
    return N < 2 ? N : Factorial(N-1)*N;
}

【分析】

递归调用了N次,每次调用都建立了一个栈帧

所以,空间复杂度是O(N)

5. 常见复杂度对比


结语

以上就是小编对算法效率和复杂度的讲解。

如果觉得小编讲的还可以,还请一键三连。互三必回!

持续更新中~!

相关推荐
盼海12 分钟前
排序算法(五)--归并排序
数据结构·算法·排序算法
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
搬砖的小码农_Sky6 小时前
C语言:数组
c语言·数据结构
先鱼鲨生8 小时前
数据结构——栈、队列
数据结构
一念之坤8 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
IT 青年8 小时前
数据结构 (1)基本概念和术语
数据结构·算法
熬夜学编程的小王8 小时前
【初阶数据结构篇】双向链表的实现(赋源码)
数据结构·c++·链表·双向链表
liujjjiyun9 小时前
小R的随机播放顺序
数据结构·c++·算法
ahadee10 小时前
蓝桥杯每日真题 - 第19天
c语言·vscode·算法·蓝桥杯
Theliars10 小时前
C语言之字符串
c语言·开发语言