UniAD:以规划为导向的端到端自动驾驶

文章链接

这个文章是CVPR2023 Best Paper

https://arxiv.org/pdf/2212.10156

提出背景

以往的自动驾驶多数是为不同的任务场景设计部署单独的模型,这样子组成的系统会很复杂如图a。

图b这是多任务共享一个主干,但还是要分离训练,而且不是端到端的。有没有什么方式你可以把所有的环节都串联起来,实现完整的端到端呢?

c.1就是一个直接预测轨迹的方式,但是它的没有明确监督学习中间的过程,所以就如同一个黑箱,基本没有可解释性。c.2做了一些改造加入了一个一个模块,但是串联似乎并不是一个好的设计。最理想的端到端是以最终的规划为导向,并且把前面的任务合理组织促进最终的规划决策的,于是作者提出c.3的端到端自动驾驶规划模型

模型解读

UniAD模型设计:以规划为导向,可以理解为,最终车的轨迹规划是结合了车身轨迹,运动特征,地图语义特征,空间占用特征等做出的综合决策

具体流程

  1. 先对多视角的图片进行特征提取获得BEV特征

  2. 然后用作两个方向:一个通过前后帧结合的自注意力查询,获得根据轨迹检测的特征(Track),实现车辆轨迹跟踪,只有清晰车辆的状态才能进行下一步的规划;另外一个通过查询地图相关元素,得到地图的查询特征(Map),这里也是多层的注意力,最终结果输出到下一个目标

  3. 接下来做轨迹特征预测,这里把前面的车辆跟踪结合地图特征又结合上BEV特征,所有都联合起来进行自注意机制的学习,获得行车运动的轨迹预测(Motion)

  4. 通过Motion轨迹预测再次结合BEV来构建占用网络,获得空间中的占用情况,并且预测占用的变化,占用也是一个关键的特征,只有车辆能够明确占用情况才可以进一步做出安全明智的规划。这里也是多层的Transformer,结合Motion轨迹预测和前后帧的token来实现占用的预测

  5. 通过占用Occ预测,Motion预测还有BEV特征,做出最后的决策规划,这里的规划可以说是集大成的结果,开启可解释性比较强,可以专门针对每个单独模块做优化

总结

这么完整的一套端到端规划流程最大的基石就是Transformer架构,通过自注意力机制,把各种具有不同语义表示的特征结合起来,做下游的规划。不仅如此,模型还基Transformer架构从特征当中获取特征,如Track,Map,Occ。在最后的两步中还是加入了BEV的,我们可以认为BEV就是一个贯穿全程且不断被强化的特征。因为BEV特征是最前且核心的特征,通过传感器直接获取,其他的特征其实都依赖于BEV去查询得到的。UniAD也不是简单把所有的任务模块堆叠,每个特征他们之间的关系以及学习构建的方式都做了清晰的明确,实现了最终的联合决策规划。

相关推荐
~~李木子~~3 小时前
中文垃圾短信分类实验报告
人工智能·分类·数据挖掘
TsingtaoAI7 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^7 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
檐下翻书1737 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao8 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
NewCarRen9 小时前
自动驾驶安全评估框架:基于物理的功能能力测试
网络安全·自动驾驶·汽车
搬砖者(视觉算法工程师)9 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
CV实验室9 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大
aitoolhub9 小时前
培训ppt高效制作:稿定设计 + Prompt 工程 30 分钟出图指南
人工智能·prompt·aigc
oranglay9 小时前
提示词(Prompt Engineering)核心思维
人工智能·prompt