UniAD:以规划为导向的端到端自动驾驶

文章链接

这个文章是CVPR2023 Best Paper

https://arxiv.org/pdf/2212.10156

提出背景

以往的自动驾驶多数是为不同的任务场景设计部署单独的模型,这样子组成的系统会很复杂如图a。

图b这是多任务共享一个主干,但还是要分离训练,而且不是端到端的。有没有什么方式你可以把所有的环节都串联起来,实现完整的端到端呢?

c.1就是一个直接预测轨迹的方式,但是它的没有明确监督学习中间的过程,所以就如同一个黑箱,基本没有可解释性。c.2做了一些改造加入了一个一个模块,但是串联似乎并不是一个好的设计。最理想的端到端是以最终的规划为导向,并且把前面的任务合理组织促进最终的规划决策的,于是作者提出c.3的端到端自动驾驶规划模型

模型解读

UniAD模型设计:以规划为导向,可以理解为,最终车的轨迹规划是结合了车身轨迹,运动特征,地图语义特征,空间占用特征等做出的综合决策

具体流程

  1. 先对多视角的图片进行特征提取获得BEV特征

  2. 然后用作两个方向:一个通过前后帧结合的自注意力查询,获得根据轨迹检测的特征(Track),实现车辆轨迹跟踪,只有清晰车辆的状态才能进行下一步的规划;另外一个通过查询地图相关元素,得到地图的查询特征(Map),这里也是多层的注意力,最终结果输出到下一个目标

  3. 接下来做轨迹特征预测,这里把前面的车辆跟踪结合地图特征又结合上BEV特征,所有都联合起来进行自注意机制的学习,获得行车运动的轨迹预测(Motion)

  4. 通过Motion轨迹预测再次结合BEV来构建占用网络,获得空间中的占用情况,并且预测占用的变化,占用也是一个关键的特征,只有车辆能够明确占用情况才可以进一步做出安全明智的规划。这里也是多层的Transformer,结合Motion轨迹预测和前后帧的token来实现占用的预测

  5. 通过占用Occ预测,Motion预测还有BEV特征,做出最后的决策规划,这里的规划可以说是集大成的结果,开启可解释性比较强,可以专门针对每个单独模块做优化

总结

这么完整的一套端到端规划流程最大的基石就是Transformer架构,通过自注意力机制,把各种具有不同语义表示的特征结合起来,做下游的规划。不仅如此,模型还基Transformer架构从特征当中获取特征,如Track,Map,Occ。在最后的两步中还是加入了BEV的,我们可以认为BEV就是一个贯穿全程且不断被强化的特征。因为BEV特征是最前且核心的特征,通过传感器直接获取,其他的特征其实都依赖于BEV去查询得到的。UniAD也不是简单把所有的任务模块堆叠,每个特征他们之间的关系以及学习构建的方式都做了清晰的明确,实现了最终的联合决策规划。

相关推荐
武子康16 小时前
大数据-197 K折交叉验证实战:sklearn 看均值/方差,选更稳的 KNN 超参
大数据·后端·机器学习
油泼辣子多加16 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
数据皮皮侠16 小时前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台
lzhdim16 小时前
魅族手机介绍
人工智能·智能手机
Debroon16 小时前
现代医疗中的AI智能体
人工智能
Winner130016 小时前
查看rk3566摄像头设备、能力、支持格式
linux·网络·人工智能
shizhenshide16 小时前
“绕过”与“破解”的成本账:自行研发、购买API与外包打码的性价比全分析
人工智能·验证码·recaptcha·ezcaptcha·recaptcha v2
龙腾亚太16 小时前
大模型在工业物流领域有哪些应用
人工智能·具身智能·智能体·世界模型·智能体培训·具身智能培训
Deepoch17 小时前
智能清洁新纪元:Deepoc开发板如何重塑扫地机器人的“大脑“
人工智能·机器人·清洁机器人·具身模型·deepoc
装不满的克莱因瓶17 小时前
【Coze智能体实战二】一键生成儿歌背单词视频
人工智能·ai·实战·agent·工作流·智能体·coze