UniAD:以规划为导向的端到端自动驾驶

文章链接

这个文章是CVPR2023 Best Paper

https://arxiv.org/pdf/2212.10156

提出背景

以往的自动驾驶多数是为不同的任务场景设计部署单独的模型,这样子组成的系统会很复杂如图a。

图b这是多任务共享一个主干,但还是要分离训练,而且不是端到端的。有没有什么方式你可以把所有的环节都串联起来,实现完整的端到端呢?

c.1就是一个直接预测轨迹的方式,但是它的没有明确监督学习中间的过程,所以就如同一个黑箱,基本没有可解释性。c.2做了一些改造加入了一个一个模块,但是串联似乎并不是一个好的设计。最理想的端到端是以最终的规划为导向,并且把前面的任务合理组织促进最终的规划决策的,于是作者提出c.3的端到端自动驾驶规划模型

模型解读

UniAD模型设计:以规划为导向,可以理解为,最终车的轨迹规划是结合了车身轨迹,运动特征,地图语义特征,空间占用特征等做出的综合决策

具体流程

  1. 先对多视角的图片进行特征提取获得BEV特征

  2. 然后用作两个方向:一个通过前后帧结合的自注意力查询,获得根据轨迹检测的特征(Track),实现车辆轨迹跟踪,只有清晰车辆的状态才能进行下一步的规划;另外一个通过查询地图相关元素,得到地图的查询特征(Map),这里也是多层的注意力,最终结果输出到下一个目标

  3. 接下来做轨迹特征预测,这里把前面的车辆跟踪结合地图特征又结合上BEV特征,所有都联合起来进行自注意机制的学习,获得行车运动的轨迹预测(Motion)

  4. 通过Motion轨迹预测再次结合BEV来构建占用网络,获得空间中的占用情况,并且预测占用的变化,占用也是一个关键的特征,只有车辆能够明确占用情况才可以进一步做出安全明智的规划。这里也是多层的Transformer,结合Motion轨迹预测和前后帧的token来实现占用的预测

  5. 通过占用Occ预测,Motion预测还有BEV特征,做出最后的决策规划,这里的规划可以说是集大成的结果,开启可解释性比较强,可以专门针对每个单独模块做优化

总结

这么完整的一套端到端规划流程最大的基石就是Transformer架构,通过自注意力机制,把各种具有不同语义表示的特征结合起来,做下游的规划。不仅如此,模型还基Transformer架构从特征当中获取特征,如Track,Map,Occ。在最后的两步中还是加入了BEV的,我们可以认为BEV就是一个贯穿全程且不断被强化的特征。因为BEV特征是最前且核心的特征,通过传感器直接获取,其他的特征其实都依赖于BEV去查询得到的。UniAD也不是简单把所有的任务模块堆叠,每个特征他们之间的关系以及学习构建的方式都做了清晰的明确,实现了最终的联合决策规划。

相关推荐
码上地球12 小时前
大数据成矿预测系列(九) | 数据的“自我画像”:自编码器如何实现非监督下的“特征学习”
人工智能·深度学习·机器学习·数学建模
愚公搬代码12 小时前
【愚公系列】《MCP协议与AI Agent开发》011-MCP协议标准与规范体系(交互协议与状态码体系)
人工智能·交互
小程故事多_8012 小时前
LangGraph系列:多智能体终极方案,ReAct+MCP工业级供应链系统
人工智能·react.js·langchain
진영_12 小时前
深度学习打卡第R4周:LSTM-火灾温度预测
人工智能·深度学习·lstm
陈希瑞12 小时前
从 0 到 1:Vue3+Django打造现代化宠物商城系统(含AI智能顾问)
人工智能·django·宠物
std787912 小时前
微软Visual Studio 2026正式登场,AI融入开发核心操作体验更流畅
人工智能·microsoft·visual studio
美狐美颜SDK开放平台12 小时前
什么是美颜sdk?美型功能开发与用户体验优化实战
人工智能·算法·ux·直播美颜sdk·第三方美颜sdk·视频美颜sdk
Mxsoft61912 小时前
电力绝缘子污秽多源感知与自适应清洁策略优化
人工智能
悟空CRM服务13 小时前
开源的力量:如何用开源技术构建高效IT架构?
java·人工智能·架构·开源·开源软件
机器人行业研究员13 小时前
机器人“小脑”萎缩,何谈“大脑”智慧?六维力/关节力传感器才是“救命稻草”
人工智能·机器人·人机交互·六维力传感器·关节力传感器