机器学习day2

一、KNN算法简介

KNN 算法,或者称 k最邻近算法,是 有监督学习中的分类算法 。它可以用于分类或回归问题,但它通常用作分类算法。

二、KNN分类流程

1.计算未知样本到每一个训练样本的距离

2.将训练样本根据距离大小升序排列

3.取出距离最近的 K 个训练样本

4.进行多数表决,统计 K 个样本中哪个类别的样本个数最多

5.将未知的样本归属到出现次数最多的类别

三、KNN回归流程

1.计算未知样本到每一个训练样本的距离

2.将训练样本根据距离大小升序排列

3.取出距离最近的 K 个训练样本

4.把这个 K 个样本的目标值计算其平均值

5.作为将未知的样本预测的值

四、KNN算法中K的选择

K值过小,过拟合(模型更易受到异常点影响)

K值过大,欠拟合

五、KNN算法API使用

1.分类问题

scikit-learn中,可以使用KNeighborsClassifier类来实现KNN分类。以下是一个简单的示例:

python 复制代码
# 导包
from sklearn.neighbors import KNeighborsClassifier

# 导数据
x = [[0, 1, 3], [1, 3, 2], [2, 4, 5], [3, 6, 4]]
y = [0, 0, 1, 1]

# 实例化对象
model = KNeighborsClassifier(n_neighbors=3) #参数n_neighbors指定了在预测时使用的邻居数量

# 训练(-->评估)
model.fit(x, y) #fit计算每个数据点之间的距离

# 预测
myret = model.predict([[4, 3, 7]])

print(f'预测值:{myret}')

2.回归问题

对于回归问题,scikit-learn提供了KNeighborsRegressor类。以下是一个简单的示例:

python 复制代码
# 导包
from sklearn.neighbors import KNeighborsRegressor
# 导数据
x = [[1, 2, 3], [2, 4, 5], [2, 3, 6], [4, 5, 1]]
y = [0.1, 0.2, 0.3, 0.4]
# 实例化对象
model = KNeighborsRegressor(n_neighbors=3)
# 训练
model.fit(x, y)
# 评估
mypre = model.predict([[2, 6, 3]])
print(f"预测值:{mypre}")
相关推荐
明月看潮生42 分钟前
青少年编程与数学 02-019 Rust 编程基础 09课题、流程控制
开发语言·算法·青少年编程·rust·编程与数学
oioihoii1 小时前
C++23 views::slide (P2442R1) 深入解析
linux·算法·c++23
yuhao__z1 小时前
代码随想录算法训练营第六十三天| 图论9—卡码网47. 参加科学大会,94. 城市间货物运输 I
算法·图论
June`2 小时前
专题三:穷举vs暴搜vs深搜vs回溯vs剪枝(全排列)决策树与递归实现详解
c++·算法·深度优先·剪枝
vlln2 小时前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习
冲帕Chompa3 小时前
图论part09dijkstra算法
算法·图论
·云扬·3 小时前
【PmHub后端篇】PmHub中基于Redis加Lua脚本的计数器算法限流实现
redis·算法·lua
周Echo周3 小时前
20、map和set、unordered_map、un_ordered_set的复现
c语言·开发语言·数据结构·c++·算法·leetcode·list
zkmall3 小时前
推荐算法工程化:ZKmall模板商城的B2C 商城的用户分层推荐策略
算法·机器学习·推荐算法
矿渣渣3 小时前
AFFS2 的 `yaffs_ext_tags` 数据结构详解
数据结构·算法·文件系统·yaffs2