机器学习day2

一、KNN算法简介

KNN 算法,或者称 k最邻近算法,是 有监督学习中的分类算法 。它可以用于分类或回归问题,但它通常用作分类算法。

二、KNN分类流程

1.计算未知样本到每一个训练样本的距离

2.将训练样本根据距离大小升序排列

3.取出距离最近的 K 个训练样本

4.进行多数表决,统计 K 个样本中哪个类别的样本个数最多

5.将未知的样本归属到出现次数最多的类别

三、KNN回归流程

1.计算未知样本到每一个训练样本的距离

2.将训练样本根据距离大小升序排列

3.取出距离最近的 K 个训练样本

4.把这个 K 个样本的目标值计算其平均值

5.作为将未知的样本预测的值

四、KNN算法中K的选择

K值过小,过拟合(模型更易受到异常点影响)

K值过大,欠拟合

五、KNN算法API使用

1.分类问题

scikit-learn中,可以使用KNeighborsClassifier类来实现KNN分类。以下是一个简单的示例:

python 复制代码
# 导包
from sklearn.neighbors import KNeighborsClassifier

# 导数据
x = [[0, 1, 3], [1, 3, 2], [2, 4, 5], [3, 6, 4]]
y = [0, 0, 1, 1]

# 实例化对象
model = KNeighborsClassifier(n_neighbors=3) #参数n_neighbors指定了在预测时使用的邻居数量

# 训练(-->评估)
model.fit(x, y) #fit计算每个数据点之间的距离

# 预测
myret = model.predict([[4, 3, 7]])

print(f'预测值:{myret}')

2.回归问题

对于回归问题,scikit-learn提供了KNeighborsRegressor类。以下是一个简单的示例:

python 复制代码
# 导包
from sklearn.neighbors import KNeighborsRegressor
# 导数据
x = [[1, 2, 3], [2, 4, 5], [2, 3, 6], [4, 5, 1]]
y = [0.1, 0.2, 0.3, 0.4]
# 实例化对象
model = KNeighborsRegressor(n_neighbors=3)
# 训练
model.fit(x, y)
# 评估
mypre = model.predict([[2, 6, 3]])
print(f"预测值:{mypre}")
相关推荐
Coovally AI模型快速验证4 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
pusue_the_sun4 小时前
数据结构:二叉树oj练习
c语言·数据结构·算法·二叉树
RaymondZhao345 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng11335 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
啊阿狸不会拉杆6 小时前
《算法导论》第 32 章 - 字符串匹配
开发语言·c++·算法
小学生的信奥之路6 小时前
洛谷P3817题解:贪心算法解决糖果分配问题
c++·算法·贪心算法
你知道网上冲浪吗7 小时前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
地平线开发者9 小时前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶
Tisfy9 小时前
LeetCode 837.新 21 点:动态规划+滑动窗口
数学·算法·leetcode·动态规划·dp·滑动窗口·概率
CoovallyAIHub10 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉