机器学习day2

一、KNN算法简介

KNN 算法,或者称 k最邻近算法,是 有监督学习中的分类算法 。它可以用于分类或回归问题,但它通常用作分类算法。

二、KNN分类流程

1.计算未知样本到每一个训练样本的距离

2.将训练样本根据距离大小升序排列

3.取出距离最近的 K 个训练样本

4.进行多数表决,统计 K 个样本中哪个类别的样本个数最多

5.将未知的样本归属到出现次数最多的类别

三、KNN回归流程

1.计算未知样本到每一个训练样本的距离

2.将训练样本根据距离大小升序排列

3.取出距离最近的 K 个训练样本

4.把这个 K 个样本的目标值计算其平均值

5.作为将未知的样本预测的值

四、KNN算法中K的选择

K值过小,过拟合(模型更易受到异常点影响)

K值过大,欠拟合

五、KNN算法API使用

1.分类问题

scikit-learn中,可以使用KNeighborsClassifier类来实现KNN分类。以下是一个简单的示例:

python 复制代码
# 导包
from sklearn.neighbors import KNeighborsClassifier

# 导数据
x = [[0, 1, 3], [1, 3, 2], [2, 4, 5], [3, 6, 4]]
y = [0, 0, 1, 1]

# 实例化对象
model = KNeighborsClassifier(n_neighbors=3) #参数n_neighbors指定了在预测时使用的邻居数量

# 训练(-->评估)
model.fit(x, y) #fit计算每个数据点之间的距离

# 预测
myret = model.predict([[4, 3, 7]])

print(f'预测值:{myret}')

2.回归问题

对于回归问题,scikit-learn提供了KNeighborsRegressor类。以下是一个简单的示例:

python 复制代码
# 导包
from sklearn.neighbors import KNeighborsRegressor
# 导数据
x = [[1, 2, 3], [2, 4, 5], [2, 3, 6], [4, 5, 1]]
y = [0.1, 0.2, 0.3, 0.4]
# 实例化对象
model = KNeighborsRegressor(n_neighbors=3)
# 训练
model.fit(x, y)
# 评估
mypre = model.predict([[2, 6, 3]])
print(f"预测值:{mypre}")
相关推荐
计算机小白一个4 小时前
蓝桥杯 Java B 组之设计 LRU 缓存
java·算法·蓝桥杯
万事可爱^5 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
大数据追光猿7 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!7 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉7 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生7 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴7 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯
Leuanghing7 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
qy发大财7 小时前
加油站(力扣134)
算法·leetcode·职场和发展
王老师青少年编程7 小时前
【GESP C++八级考试考点详细解读】
数据结构·c++·算法·gesp·csp·信奥赛