【动态规划】Leetcode 416. 分割等和子集【中等】

分割等和子集

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入 :nums = [1,5,11,5]
输出 :true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

解题思路

这是一个典型的动态规划问题,可以使用动态规划来解决

  • 1、计算数组 nums 的总和 sum。
  • 2、如果 sum 为奇数,那么无法将数组分割成两个和相等的子集,直接返回 false。
  • 3、将问题转化为背包问题:尝试从数组中挑选一些数字,使得它们的和等于 sum 的一半。 如果能够找到这样的数字组合,就说明可以将数组分割成两个和相等的子集。
  • 4、定义一个二维数组 dp,其中 dp[i][j] 表示在前 i 个数字中是否存在和为 j 的子集。
  • 5、初始化 dp 数组,当不选取任何数字时,可以得到和为 0 的子集,因此 dp[i][0] = true(0 <= i <= nums.length);当没有数字可选时,除了和为 0 的子集,其他和均不可能存在,因此 dp[0][j] = false(1 <= j <= sum/2)。
  • 6、遍历数组 nums,在每个位置考虑选取或不选取当前数字,更新 dp 数组。
  • 7、返回 dp[nums.length][sum/2],表示是否存在和为 sum/2 的子集。

Java实现

java 复制代码
public class PartitionEqualSubsetSum {

    public boolean canPartition(int[] nums) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        if (sum % 2 != 0) {
            return false;
        }
        int target = sum / 2;
        boolean[][] dp = new boolean[nums.length + 1][target + 1];
        for (int i = 0; i <= nums.length; i++) {
            dp[i][0] = true;
        }
        /**
         * 这段代码是典型的动态规划解法,用于解决一个背包问题。在这里,dp[i][j]
         * 表示使用数组 nums 的前 i 个数字能否组成和为 j 的情况。
         *
         * 具体来说,内层的两个循环分别是:
         * 外层循环遍历数组 nums 的每个数字(从 1 到 nums.length)。
         * 内层循环遍历目标和 target 的可能取值(从 1 到 target)。
         *
         * 在每一次迭代中,我们需要考虑两种情况:
         * 1、如果当前数字 nums[i - 1] 大于当前目标和 j,则无法使用当前数字来达到目标和 j,
         * 因此 dp[i][j] 应该等于 dp[i - 1][j],即不使用当前数字 nums[i - 1];
         *
         * 2、如果当前数字 nums[i - 1] 小于等于当前目标和 j,则存在两种选择:
         * 不使用当前数字 nums[i - 1],即 dp[i][j] = dp[i - 1][j];
         * 使用当前数字 nums[i - 1],即 dp[i][j] = dp[i - 1][j - nums[i - 1]]。
         *  如果选择使用当前数字,则需要查看前一个状态 dp[i - 1][j - nums[i - 1]] 是否为 true,
         *  即在不考虑当前数字时,前一个状态能否达到目标和为 j - nums[i - 1] 的情况。
         *  如果为 true,则说明使用当前数字后,目标和为 j 的情况可以通过选择当前数字来实现。
         *
         * 因此,最终 dp[i][j] 的值是以上两种情况的逻辑或(||)结果。这样,
         * 在外层循环和内层循环的遍历结束后,dp[nums.length][target]
         * 就表示使用数组 nums 中的所有数字能否组成目标和为 target 的情况。
         */
        for (int i = 1; i <= nums.length; i++) {
            for (int j = 1; j <= target; j++) {
                if (nums[i - 1] > j) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];
                }
            }
        }
        return dp[nums.length][target];
    }

    public static void main(String[] args) {
        PartitionEqualSubsetSum partitionEqualSubsetSum = new PartitionEqualSubsetSum();

        // Test case 1
        int[] nums1 = {1, 5, 11, 5};
        System.out.println(partitionEqualSubsetSum.canPartition(nums1)); // Output: true

        // Test case 2
        int[] nums2 = {1, 2, 3, 5};
        System.out.println(partitionEqualSubsetSum.canPartition(nums2)); // Output: false
    }
}

时间空间复杂度

  • 时间复杂度:遍历了一次数组nums,并使用了一个二维数组dp,时间复杂度为O(n * sum),其中n为数组nums的长度,sum为数组nums的总和。

  • 空间复杂度:使用了一个二维数组dp,空间复杂度为O(n * sum)。

相关推荐
地平线开发者1 小时前
征程 6 | linear 高精度输出配置方式
算法·自动驾驶
小尧嵌入式1 小时前
C++基础语法总结
开发语言·c++·stm32·单片机·嵌入式硬件·算法
white-persist1 小时前
【攻防世界】reverse | IgniteMe 详细题解 WP
c语言·汇编·数据结构·c++·python·算法·网络安全
稚辉君.MCA_P8_Java1 小时前
Gemini永久会员 归并排序(Merge Sort) 基于分治思想(Divide and Conquer)的高效排序算法
java·linux·算法·spring·排序算法
地平线开发者2 小时前
征程 6 | QAT 新版 qconfig 量化模板使用教程
算法·自动驾驶
多恩Stone2 小时前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
山峰哥2 小时前
沉浸式翻译插件深度评测:打破语言壁垒的黑科技利器
数据结构·科技·算法·编辑器·办公
AI脚下的巨人2 小时前
机器人逆运动学:从SVD到IK算法
算法·机器人
ゞ 正在缓冲99%…3 小时前
2025.9.28华为软开
算法·华为
9ilk4 小时前
【C++】 --- 哈希
c++·后端·算法·哈希算法