LMDeploy量化部署LLM&VLM实践-笔记五

本次课程由西北工业大学博士生、书生·浦源挑战赛冠军队伍队长、第一期书生·浦语大模型实战营优秀学员【安泓郡】讲解【OpenCompass 大模型评测实战】课程

课程视频:https://www.bilibili.com/video/BV1tr421x75B/

课程文档:https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/README.md

模型部署

  1. 在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。
  2. 在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。

大模型部署挑战一:计算量巨大

大模型部署挑战二:内存开销巨大

大模型部署挑战三:访存瓶颈

大模型部署方法:

  1. 模型剪枝:剪枝指移除模型中不必要或多余的组件,比如参数,以使模型更加高效。通过对模型中贡献有限的兄余参数进行剪枝,在保证性能最低下降的同时,可以减小存储需求、提高计算效率。
  2. 知识蒸馏: 知识蒸馏是一种经典的模型压缩方法,核心思想是通过引导轻量化的学生模型"模仿"性能更好、结构更复杂的教师模型,在不改变学生模型结构的情况下提高其性能。
  3. 量化:量化技术将传统的表示方法中的浮点数转换为整数或其他离散形式,以减轻深度学习模型的存储和计算负担。

LMDeploy简介:

LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。核心功能包括高效推理、可靠量化、便捷服务和有状态推理。

功点:

  1. 高效推理
  2. 可靠的量化
  3. 便捷的服务
  4. 有状态推理

核心功能:模型高效推理、模型量化压缩、服务化部署

LMDeploy性能表现:

LMDeploy TurboMind 引擎拥有卓越的推理能力,在各种规模的模型上,每秒处理的请求数是 vLLM的1.36~1.85 倍。在静态推理能力方面,TurboMind 4bit 模型推理速度(out token/s)远高于FP16/BF16推理。在小batch时,提高到2.4倍。

动手实践部分见:LMDeploy量化部署LLM&VLM实践-作业五

相关推荐
致***锌8 分钟前
期权标准化合约是什么?
笔记
MidJourney中文版13 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上39 分钟前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
burg_xun1 小时前
【Vibe Coding 实战】我如何用 AI 把一张草图变成了能跑的应用
人工智能
酌沧2 小时前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师2 小时前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员