29 OpenCV 图像距

文章目录

距的概念

距的概念

API函数

cpp 复制代码
moments(
InputArray  array,//输入数据
bool   binaryImage=false // 是否为二值图像
)

contourArea(
InputArray  contour,//输入轮廓数据
bool   oriented// 默认false、返回绝对值)

arcLength(
InputArray  curve,//输入曲线数据
bool   closed// 是否是封闭曲线)

示例

c 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, gray_src;
int threshold_value = 80;
int threshold_max = 255;
const char* output_win = "image moents demo";
RNG rng(12345);
void Demo_Moments(int, void*);
int main(int argc, char** argv) {
	src = imread("D:/vcprojects/images/circle.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, gray_src, CV_BGR2GRAY);
	GaussianBlur(gray_src, gray_src, Size(3, 3), 0, 0);

	char input_win[] = "input image";
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow(input_win, src);

	createTrackbar("Threshold Value : ", output_win, &threshold_value, threshold_max, Demo_Moments);
	Demo_Moments(0, 0);

	waitKey(0);
	return 0;
}

void Demo_Moments(int, void*) {
    // 定义变量
    Mat canny_output; // Canny边缘检测的输出
    vector<vector<Point>> contours; // 图像中找到的轮廓
    vector<Vec4i> hierachy; // 轮廓的层级结构

    // 应用Canny边缘检测
    Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);
    // 在二值图像中找到轮廓
    findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

    // 计算轮廓的矩和质心
    vector<Moments> contours_moments(contours.size()); // 轮廓的矩
    vector<Point2f> ccs(contours.size()); // 轮廓的质心
    for (size_t i = 0; i < contours.size(); i++) {
   		 // 计算轮廓的矩
        contours_moments[i] = moments(contours[i]); 
        // 计算质心
        ccs[i] = Point(static_cast<float>(contours_moments[i].m10 / contours_moments[i].m00), static_cast<float>(contours_moments[i].m01 / contours_moments[i].m00)); 
    }

    // 在原始图像上绘制轮廓和质心
    Mat drawImg; // 用于绘制轮廓和质心的图像
    src.copyTo(drawImg); // 复制原始图像以进行绘制
    for (size_t i = 0; i < contours.size(); i++) {
        // 跳过小轮廓
        if (contours[i].size() < 100) {
            continue;
        }
        // 为每个轮廓生成随机颜色
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
        // 打印质心坐标和轮廓属性
        printf("center point x : %.2f y : %.2f\n", ccs[i].x, ccs[i].y);
        printf("contours %d area : %.2f   arc length : %.2f\n", i, contourArea(contours[i]), arcLength(contours[i], true));
        // 在图像上绘制轮廓和质心
        drawContours(drawImg, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
        circle(drawImg, ccs[i], 2, color, 2, 8);
    }

    // 显示绘制了轮廓和质心的图像
    imshow(output_win, drawImg);
    return;
}
相关推荐
Leo.yuan10 分钟前
数据处理工具是做什么的?常见数据处理方法介绍
大数据·数据库·人工智能·python·信息可视化
墨尘游子17 分钟前
基于 LSTM 与 SVM 融合的时间序列预测模型:理论框架与协同机制—实践算法(1)
人工智能·支持向量机·lstm
深度学习机器25 分钟前
Gemini CLI源码解析:Agent与上下文管理实现细节
人工智能·llm·agent
谢嘉伟31 分钟前
SuperClaude Framework 使用指南
人工智能
柴 基32 分钟前
PyTorch 使用指南
人工智能·pytorch·python
神经星星41 分钟前
估值准确率超99%!基于YOLOv11的陶瓷分类智能框架融合视觉建模与经济分析,实现文物分类及价值估测
人工智能·机器学习·开源
阿里云大数据AI技术1 小时前
[VLDB 2025]面向云计算平台的多模态慢查询根因排序
大数据·数据库·人工智能
007tg1 小时前
007TG洞察:GPT-5前瞻与AI时代竞争力构建:技术挑战与落地路径
人工智能·gpt·机器学习
nassi_1 小时前
GPT Agent与Comet AI Aent浏览器对比横评
人工智能·gpt
不叫猫先生1 小时前
零基础部署网站?使用天翼云服务搭建语音听写应用系统
人工智能·语音识别·云服务器