【简单介绍下机器学习之sklearn基础】

🎥博主:程序员不想YY啊
💫CSDN优质创作者,CSDN实力新星,CSDN博客专家
🤗点赞🎈收藏⭐再看💫养成习惯
✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

💫目录

  • [💫0. 前言](#💫0. 前言)
  • [💫1. 安装Sklearn](#💫1. 安装Sklearn)
  • [💫2. 导入数据](#💫2. 导入数据)
  • [💫3. 划分数据集](#💫3. 划分数据集)
  • [💫4. 选取模型](#💫4. 选取模型)
  • [💫5. 训练模型](#💫5. 训练模型)
  • [💫6. 预测](#💫6. 预测)
  • [💫7. 评估模型](#💫7. 评估模型)
  • [💫8. 改进模型](#💫8. 改进模型)
  • [💫9. 使用模型](#💫9. 使用模型)

💫0. 前言

🎈机器学习是一个用于构建预测模型的领域,Scikit-learn(简称sklearn)是Python中的一个开源机器学习库,它支持包括分类、回归、降维和聚类算法,并且集成了与这些算法相关的机器学习的不同任务的各种工具。以下是一个简要的基础教程,涵盖使用sklearn进行机器学习的一些主要步骤:

💫1. 安装Sklearn

🎈你可以使用pip命令安装sklearn:

bash 复制代码
pip install scikit-learn

💫2. 导入数据

🎈使用sklearn可以导入内置的数据集,举个例子:

python 复制代码
from sklearn import datasets

iris = datasets.load_iris()
X, y = iris.data, iris.target

💫3. 划分数据集

🎈数据通常被划分为训练集和测试集,以便于评估模型性能:

python 复制代码
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

💫4. 选取模型

🎈选择一个适合的机器学习算法。例如,使用决策树作为分类器:

python 复制代码
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

💫5. 训练模型

🎈在训练数据上训练选定的模型:

python 复制代码
model.fit(X_train, y_train)

💫6. 预测

🎈现在模型已经训练好了,我们可以在测试集上进行预测:

python 复制代码
predictions = model.predict(X_test)

💫7. 评估模型

🎈评估模型的性能,使用各种指标如准确度、召回率等:

python 复制代码
from sklearn.metrics import accuracy_score

accuracy = accuracy_score(y_test, predictions)
print(f"Model Accuracy: {accuracy}")

💫8. 改进模型

🎈根据模型评估结果调整参数或者尝试不同的模型来改进模型性能。对于决策树,你可能会调节如下参数:

python 复制代码
model = DecisionTreeClassifier(max_depth=5, min_samples_split=10)
model.fit(X_train, y_train)
predictions = model.predict(X_test)

💫9. 使用模型

🎈一旦模型性能让你满意,你可以使用它进行预测或进一步分析,例如:

python 复制代码
new_data = [[5.1, 3.5, 1.4, 0.2]]  # 新样本数据
new_prediction = model.predict(new_data)
print(f"Prediction for the new data: {new_prediction}")

🎈这个简要教程仅涉及了使用sklearn进行机器学习的一些基础内容,实际应用还包括特征工程、模型选择、过拟合处理、模型调参、模型持久化等更多技术和概念。它是入门机器学习和构建数据驱动应用的理想工具。

相关推荐
我就说好玩18 小时前
2020年美国总统大选数据分析与模型预测
大数据·python·数据挖掘·数据分析·pandas·sklearn
镜花照无眠2 天前
sklearn红酒数据集分类器的构建和评估
python·sklearn
今天有没有吃饱饱3 天前
【深度学习】多分类任务评估指标sklearn和torchmetrics对比
pytorch·深度学习·分类·sklearn
pingu的生信备忘录4 天前
sklearn|机器学习:决策树(一)
决策树·机器学习·sklearn
zbdx不知名菜鸡5 天前
sklearn机器学习实战
人工智能·机器学习·sklearn
武子康6 天前
大数据-203 数据挖掘 机器学习理论 - 决策树 sklearn 剪枝参数 样本不均匀问题
大数据·人工智能·决策树·机器学习·数据挖掘·scikit-learn·sklearn
武子康6 天前
大数据-202 数据挖掘 机器学习理论 - 决策树 sklearn 绘制决策树 防止过拟合
大数据·人工智能·决策树·机器学习·数据挖掘·scikit-learn·sklearn
桂渊泉树7 天前
sklearn 分类变量转换
人工智能·分类·sklearn
梭七y9 天前
(自用)机器学习python代码相关笔记
笔记·机器学习·sklearn
小白熊_XBX9 天前
机器学习实战——基于粒子群优化算法(PSO)优化支持向量回归(SVR)模型(附完整代码)
人工智能·算法·机器学习·分类·数据挖掘·回归·sklearn