【简单介绍下机器学习之sklearn基础】

🎥博主:程序员不想YY啊
💫CSDN优质创作者,CSDN实力新星,CSDN博客专家
🤗点赞🎈收藏⭐再看💫养成习惯
✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

💫目录

  • [💫0. 前言](#💫0. 前言)
  • [💫1. 安装Sklearn](#💫1. 安装Sklearn)
  • [💫2. 导入数据](#💫2. 导入数据)
  • [💫3. 划分数据集](#💫3. 划分数据集)
  • [💫4. 选取模型](#💫4. 选取模型)
  • [💫5. 训练模型](#💫5. 训练模型)
  • [💫6. 预测](#💫6. 预测)
  • [💫7. 评估模型](#💫7. 评估模型)
  • [💫8. 改进模型](#💫8. 改进模型)
  • [💫9. 使用模型](#💫9. 使用模型)

💫0. 前言

🎈机器学习是一个用于构建预测模型的领域,Scikit-learn(简称sklearn)是Python中的一个开源机器学习库,它支持包括分类、回归、降维和聚类算法,并且集成了与这些算法相关的机器学习的不同任务的各种工具。以下是一个简要的基础教程,涵盖使用sklearn进行机器学习的一些主要步骤:

💫1. 安装Sklearn

🎈你可以使用pip命令安装sklearn:

bash 复制代码
pip install scikit-learn

💫2. 导入数据

🎈使用sklearn可以导入内置的数据集,举个例子:

python 复制代码
from sklearn import datasets

iris = datasets.load_iris()
X, y = iris.data, iris.target

💫3. 划分数据集

🎈数据通常被划分为训练集和测试集,以便于评估模型性能:

python 复制代码
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

💫4. 选取模型

🎈选择一个适合的机器学习算法。例如,使用决策树作为分类器:

python 复制代码
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

💫5. 训练模型

🎈在训练数据上训练选定的模型:

python 复制代码
model.fit(X_train, y_train)

💫6. 预测

🎈现在模型已经训练好了,我们可以在测试集上进行预测:

python 复制代码
predictions = model.predict(X_test)

💫7. 评估模型

🎈评估模型的性能,使用各种指标如准确度、召回率等:

python 复制代码
from sklearn.metrics import accuracy_score

accuracy = accuracy_score(y_test, predictions)
print(f"Model Accuracy: {accuracy}")

💫8. 改进模型

🎈根据模型评估结果调整参数或者尝试不同的模型来改进模型性能。对于决策树,你可能会调节如下参数:

python 复制代码
model = DecisionTreeClassifier(max_depth=5, min_samples_split=10)
model.fit(X_train, y_train)
predictions = model.predict(X_test)

💫9. 使用模型

🎈一旦模型性能让你满意,你可以使用它进行预测或进一步分析,例如:

python 复制代码
new_data = [[5.1, 3.5, 1.4, 0.2]]  # 新样本数据
new_prediction = model.predict(new_data)
print(f"Prediction for the new data: {new_prediction}")

🎈这个简要教程仅涉及了使用sklearn进行机器学习的一些基础内容,实际应用还包括特征工程、模型选择、过拟合处理、模型调参、模型持久化等更多技术和概念。它是入门机器学习和构建数据驱动应用的理想工具。

相关推荐
非门由也5 小时前
《sklearn机器学习——回归指标2》
机器学习·回归·sklearn
非门由也16 小时前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
非门由也1 天前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn
非门由也1 天前
《sklearn机器学习——回归指标1》
机器学习·回归·sklearn
非门由也2 天前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
非门由也2 天前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
非门由也2 天前
《sklearn机器学习——管道和复合估算器》可视化复合估计器
人工智能·机器学习·sklearn
非门由也3 天前
《sklearn机器学习——聚类性能指标》Fowlkes-Mallows 得分
机器学习·聚类·sklearn
非门由也3 天前
《sklearn机器学习——绘制分数以评估模型》验证曲线、学习曲线
人工智能·机器学习·sklearn
非门由也4 天前
《sklearn机器学习——聚类性能指标》Silhouette 系数
机器学习·聚类·sklearn