机器学习基本流程

Jupyter Notebook 代码连接:
machine_learning_demo
machine_learning_ensembles

Step 1: Imports and Configuration

python 复制代码
import pandas as pd
import numpy as np
import copy
import json
import pickle
import joblib
import lightgbm as lgb
import optuna
import warnings
import gc

from sklearn.metrics import roc_curve, roc_auc_score, recall_score, accuracy_score, fbeta_score, precision_score
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.base import clone
import matplotlib.pyplot as plt
import seaborn as sns

# Setting configuration.
pd.set_option('display.float_format', lambda x: '%.5f' %x)
warnings.filterwarnings('ignore')
sns.set_style('whitegrid')
optuna.logging.set_verbosity(optuna.logging.WARNING)

SEED = 42

Step 2: Load the datasets

python 复制代码
print('Loading data...')
path = '../datasets/Home-Credit-Default-Risk/'
df = pd.read_csv(path + 'selected_data.csv', index_col='SK_ID_CURR') 
Loading data...

定义帮助节省内存的函数

python 复制代码
def convert_dtypes(df, verbose=True):
    original_memory = df.memory_usage().sum()
    df = df.apply(pd.to_numeric, errors='ignore')
    
    # Convert booleans to integers
    boolean_features = df.select_dtypes(bool).columns.tolist()
    df[boolean_features] = df[boolean_features].astype(np.int32)
     # Convert objects to category
    object_features = df.select_dtypes(object).columns.tolist()
    df[object_features] = df[object_features].astype('category')
    # Float64 to float32
    float_features = df.select_dtypes(float).columns.tolist()
    df[float_features] = df[float_features].astype(np.float32)
    # Int64 to int32
    int_features = df.select_dtypes(int).columns.tolist()
    df[int_features] = df[int_features].astype(np.int32)
        
    new_memory = df.memory_usage().sum()
    if verbose:
        print(f'Original Memory Usage: {round(original_memory / 1e9, 2)} gb.')
        print(f'New Memory Usage: {round(new_memory / 1e9, 2)} gb.')
    
    return df
python 复制代码
print("Training dataset shape: ", df.shape)
Training dataset shape:  (307511, 836)
python 复制代码
df = convert_dtypes(df)
Original Memory Usage: 2.06 gb.
New Memory Usage: 1.0 gb.
python 复制代码
df.dtypes.value_counts()
float32     796
int32         7
category      3
category      3
category      3
category      3
category      3
category      2
category      2
category      2
category      1
category      1
category      1
category      1
category      1
category      1
category      1
category      1
category      1
category      1
category      1
category      1
Name: count, dtype: int64

Step 3: Data preprocessing

python 复制代码
# Check if the data is unbalanced
df["TARGET"].value_counts()
TARGET
0    282686
1     24825
Name: count, dtype: int64

数据集存在轻微的样本不平衡,我们接下来测试几种处理方法,来提高模型表现。

先定义评估函数

python 复制代码
def timer(func):
    import time
    import functools
    def strfdelta(tdelta, fmt):
        hours, remainder = divmod(tdelta, 3600)
        minutes, seconds = divmod(remainder, 60)
        return fmt.format(hours, minutes, seconds)
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        click = time.time()
        result = func(*args, **kwargs)
        delta = strfdelta(time.time() - click, "{:.0f} hours {:.0f} minutes {:.0f} seconds")
        print(f"{func.__name__} cost time {delta}")
        return result
    return wrapper


# Define a cross validation strategy
# We use the cross_val_score function of Sklearn. 
# However this function has not a shuffle attribute, we add then one line of code, 
# in order to shuffle the dataset prior to cross-validation

@timer
def evaluate(model, X, y, n_folds = 5, params=None):
    kf = KFold(n_folds, shuffle=True, random_state=SEED).get_n_splits(X)
    scores = cross_val_score(
        model, 
        X, 
        y, 
        scoring="roc_auc", 
        cv = kf,
        verbose=1,
        params=params
    )
    print(f"valid auc: {scores.mean():.3f} +/- {scores.std():.3f}")
    return scores.mean()

Split data

留25%作为模型的验证集

python 复制代码
# Split data into training and testing sets
X_train, X_valid, y_train, y_valid = train_test_split(
    df.drop(columns="TARGET"), 
    df["TARGET"], 
    test_size=0.25, 
    random_state=SEED
)

print("X_train shape:", X_train.shape)
print('train:', y_train.value_counts(), sep='\n') 
print('valid:', y_valid.value_counts(), sep='\n')
X_train shape: (230633, 835)
train:
TARGET
0    211999
1     18634
Name: count, dtype: int64
valid:
TARGET
0    70687
1     6191
Name: count, dtype: int64
python 复制代码
del df
gc.collect()
python 复制代码
# Specific feature names and categorical features
feature_name = X_train.columns.tolist()
categorical_feature = X_train.select_dtypes('category').columns.tolist()
python 复制代码
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import make_column_transformer

# Encode categorical features
encoder = make_column_transformer(
    (OneHotEncoder(
        drop='if_binary', 
        min_frequency=0.02, 
        max_categories=20, 
        sparse_output=False,
        handle_unknown='ignore'
    ), categorical_feature),
    remainder='passthrough', 
    verbose_feature_names_out=False,
    verbose=True    
)

print('fitting...')
encoder.fit(X_train)

print('encoding...')
train_dummies = encoder.transform(X_train)
valid_dummies = encoder.transform(X_valid)
print('train data shape:', X_train.shape)
fitting...
[ColumnTransformer] . (1 of 2) Processing onehotencoder, total=   4.2s
[ColumnTransformer] ..... (2 of 2) Processing remainder, total=   0.0s
encoding...
train data shape: (230633, 835)

model 1: Use default parameters

python 复制代码
model = lgb.LGBMClassifier(
    boosting_type='gbdt',
    objective='binary',
    metric='auc',
    n_estimators=500,
    random_state=SEED,
    verbose=0
)
fit_params = dict(
    callbacks = [lgb.early_stopping(20)],
    eval_set = [(train_dummies, y_train), (valid_dummies, y_valid)]
)

score = evaluate(model, train_dummies, y_train, params=fit_params)
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[147]	valid_0's auc: 0.860844	valid_1's auc: 0.778985
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[99]	valid_0's auc: 0.836905	valid_1's auc: 0.777066
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[121]	valid_0's auc: 0.846901	valid_1's auc: 0.777927
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[118]	valid_0's auc: 0.846341	valid_1's auc: 0.778487
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[114]	valid_0's auc: 0.845653	valid_1's auc: 0.776624
valid auc: 0.779 +/- 0.001
evaluate cost time 0 hours 1 minutes 57 seconds

model 2: Set class weight

python 复制代码
model2 = clone(model) # Construct a new unfitted estimator with the same parameters.
model2.set_params(class_weight='balanced')

score = evaluate(model2, train_dummies, y_train, params=fit_params)
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[122]	valid_0's auc: 0.843105	valid_1's auc: 0.780157
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[95]	valid_0's auc: 0.831016	valid_1's auc: 0.780049
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[107]	valid_0's auc: 0.835709	valid_1's auc: 0.779769
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[159]	valid_0's auc: 0.856821	valid_1's auc: 0.781057
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[138]	valid_0's auc: 0.848312	valid_1's auc: 0.779905
valid auc: 0.780 +/- 0.002
evaluate cost time 0 hours 2 minutes 20 seconds

设置 is_unbalance=True 后,模型有所改善。

model 3: SMOTE

python 复制代码
from imblearn.over_sampling import SMOTE 
import imblearn

X_balanced, y_balanced = SMOTE(random_state=SEED).fit_resample(train_dummies, y_train)
print('balanced train data shape:', X_balanced.shape)

score = evaluate(clone(model), X_balanced, y_balanced, params=fit_params)
balanced train data shape: (423998, 990)
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[64]	valid_0's auc: 0.726936	valid_1's auc: 0.7216
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[138]	valid_0's auc: 0.834743	valid_1's auc: 0.780546
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[167]	valid_0's auc: 0.849441	valid_1's auc: 0.782093
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[140]	valid_0's auc: 0.834219	valid_1's auc: 0.780796
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[166]	valid_0's auc: 0.848353	valid_1's auc: 0.780799
valid auc: 0.976 +/- 0.048
evaluate cost time 0 hours 5 minutes 46 seconds

model 4: Ensemble method

python 复制代码
from imblearn.ensemble import BalancedRandomForestClassifier

model4 = BalancedRandomForestClassifier(
    n_estimators=100, 
    max_depth=5,
    random_state=SEED,
    verbose=1
)
score = evaluate(model4, train_dummies, y_train)
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    7.3s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    7.2s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    7.2s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    7.3s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    7.1s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.1s


valid auc: 0.738 +/- 0.002
evaluate cost time 0 hours 1 minutes 21 seconds

model 5: FocalLoss

python 复制代码
from focal_loss import BinaryFocalLoss # self-define loss function

focalloss = BinaryFocalLoss(alpha=0.9, gamma=0.05)
model5 = clone(model) 
model5.set_params(objective = focalloss.objective)
fit_params['eval_metric'] = focalloss.evaluate

score = evaluate(model5, train_dummies, y_train, params=fit_params)
[LightGBM] [Info] Using self-defined objective function
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[116]	valid_0's auc: 0.840709	valid_0's focal_loss: 0.0792912	valid_1's auc: 0.780966	valid_1's focal_loss: 0.0886921
[LightGBM] [Info] Using self-defined objective function
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[87]	valid_0's auc: 0.82691	valid_0's focal_loss: 0.0816416	valid_1's auc: 0.779874	valid_1's focal_loss: 0.0888508
[LightGBM] [Info] Using self-defined objective function
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[101]	valid_0's auc: 0.832985	valid_0's focal_loss: 0.0805644	valid_1's auc: 0.779294	valid_1's focal_loss: 0.0889485
[LightGBM] [Info] Using self-defined objective function
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[87]	valid_0's auc: 0.827538	valid_0's focal_loss: 0.0816012	valid_1's auc: 0.78189	valid_1's focal_loss: 0.0885146
[LightGBM] [Info] Using self-defined objective function
Training until validation scores don't improve for 20 rounds
Early stopping, best iteration is:
[119]	valid_0's auc: 0.840904	valid_0's focal_loss: 0.0792486	valid_1's auc: 0.781548	valid_1's focal_loss: 0.0886565
valid auc: nan +/- nan
evaluate cost time 0 hours 2 minutes 16 seconds

自定义FocalLoss损失函数后,表现不错

python 复制代码
del train_dummies, valid_dummies
gc.collect()

Step 4: Hyperparameter Tuning

超参数调优算法主要有网格搜索(Grid Search),随机搜索(Randomized Search)和贝叶斯优化(Bayesian Optimization),本文采用贝叶斯优化。

本章准备使用LightGBM原生接口,需要创建 lightgbm 原生数据集

python 复制代码
# Create Dataset object for lightgbm
dtrain = lgb.Dataset(
    X_train, label=y_train, 
    free_raw_data=True
)

# In LightGBM, the validation data should be aligned with training data.
# if you want to re-use data, remember to set free_raw_data=False
dvalid = lgb.Dataset(
    X_valid, label=y_valid, 
    reference=dtrain, 
    free_raw_data=True
)

超参数和目标函数设置

python 复制代码
# Here we use Optuna

# define the search space and the objecive function
def objective(trial):
    # LightGBM can use a dictionary to set Parameters.
    params = dict(
        boosting_type = 'gbdt',
        objective = 'binary',
        metric = 'auc',
        is_unbalance = True,
        num_boost_round = trial.suggest_int("num_boost_round", 50, 2000, step=50),
        learning_rate = trial.suggest_float("learning_rate", 1e-4, 10, log=True), 
        max_depth = trial.suggest_int("max_depth", 2, 10),  
        feature_fraction = trial.suggest_float("feature_fraction", 0.2, 1.0), 
        bagging_fraction = trial.suggest_float("bagging_fraction", 0.2, 1.0),  
        bagging_freq = 5,
        lambda_l1 = trial.suggest_float("lambda_l1", 1e-4, 1e2, log=True),  
        lambda_l2 = trial.suggest_float("lambda_l2", 1e-4, 1e2, log=True),
        random_state = SEED,
        verbosity = -1
    )
    
    # Perform the cross-validation with given parameters.
    eval_results = lgb.cv(
        params, 
        dtrain, 
        nfold = 5,
        shuffle = True,
        feature_name = feature_name,
        categorical_feature = categorical_feature,
        callbacks=[lgb.early_stopping(20)]
    )
    return eval_results['valid auc-mean'][-1]

贝叶斯优化

python 复制代码
# Bayesian optimization

# create a study object.
study = optuna.create_study(
    study_name = 'lightgbm-study',  # Unique identifier of the study.
    direction = 'maximize'
)

# Invoke optimization of the objective function.
study.optimize(
    objective, 
    n_trials = 100, 
    timeout = 7200,
    gc_after_trial = True,
    show_progress_bar = True
)
python 复制代码
joblib.dump(study, path + "lightgbm-study.pkl")

study = joblib.load(path + "lightgbm-study.pkl")

print("Best trial until now:")
print(" Value: ", study.best_trial.value)
print(" Params: ")
for key, value in study.best_trial.params.items():
    print(f"    {key}: {value}")
Best trial until now:
 Value:  0.785777090367696
 Params: 
    num_boost_round: 1000
    learning_rate: 0.029182324488925142
    max_depth: 8
    feature_fraction: 0.902981862669475
    bagging_fraction: 0.9853966386414182
    lambda_l1: 73.55650874339202
    lambda_l2: 6.572289325673235
python 复制代码
# Continue to study
study.optimize(
    objective, 
    n_trials = 100, 
    timeout = 7200,
    gc_after_trial = True,
    show_progress_bar = True
)
python 复制代码
print("Number of finished trials: ", len(study.trials))
print("Best trial until now:")
print(" Best value: ", study.best_trial.value)
print(" Best params: ")
for key, value in study.best_trial.params.items():
    print(f"    {key}: {value}")
Number of finished trials:  135
Best trial until now:
 Best value:  0.7865747325768904
 Best params: 
    num_boost_round: 1300
    learning_rate: 0.015480784915810246
    max_depth: 8
    feature_fraction: 0.3519165350962246
    bagging_fraction: 0.9999568798413535
    lambda_l1: 65.08840723355036
    lambda_l2: 15.024421566966097

可视化

绘制优化过程曲线

python 复制代码
optuna.visualization.plot_optimization_history(study)

绘制study目标值的edf

python 复制代码
optuna.visualization.plot_edf(study)

Step 5: Training

训练

本节准备使用LightGBM原生接口,需要创建 lightgbm 原生数据集

python 复制代码
# Create Dataset object for lightgbm
dtrain = lgb.Dataset(
    X_train, label=y_train, 
    free_raw_data=True
)

# In LightGBM, the validation data should be aligned with training data.
# if you want to re-use data, remember to set free_raw_data=False
dvalid = lgb.Dataset(
    X_valid, label=y_valid, 
    reference=dtrain, 
    free_raw_data=True
    )
python 复制代码
print('Starting training...')

best_params = dict(
    boosting_type = 'gbdt',
    objective = 'binary',
    metric = 'auc',
    is_unbalance = True,
    num_boost_round = 1300,
    learning_rate = 0.015480784915810246,
    max_depth = 8,
    feature_fraction = 0.3519165350962246,
    bagging_fraction = 0.9999568798413535,
    lambda_l1 = 65.08840723355036,
    lambda_l2 = 15.024421566966097,
    subsample_freq = 5,
    random_state = SEED,
    verbosity = 0
)

eval_results = {} # to record eval results for plotting
callbacks = [
    lgb.log_evaluation(period=100), 
    lgb.early_stopping(stopping_rounds=20),
    lgb.record_evaluation(eval_results)
]

# Training
bst = lgb.train(
    best_params, 
    dtrain, 
    feature_name = feature_name, 
    categorical_feature = categorical_feature,
    valid_sets = [dtrain, dvalid],
    callbacks = callbacks
)
Starting training...
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).
Training until validation scores don't improve for 20 rounds
[100]	training's auc: 0.77831	valid_1's auc: 0.760952
[200]	training's auc: 0.793115	valid_1's auc: 0.770076
[300]	training's auc: 0.803729	valid_1's auc: 0.775631
[400]	training's auc: 0.811797	valid_1's auc: 0.778893
[500]	training's auc: 0.818789	valid_1's auc: 0.78126
[600]	training's auc: 0.825071	valid_1's auc: 0.782986
[700]	training's auc: 0.830958	valid_1's auc: 0.784242
[800]	training's auc: 0.836567	valid_1's auc: 0.785216
[900]	training's auc: 0.841761	valid_1's auc: 0.785837
[1000]	training's auc: 0.846603	valid_1's auc: 0.786335
[1100]	training's auc: 0.851281	valid_1's auc: 0.786744
Early stopping, best iteration is:
[1118]	training's auc: 0.852112	valid_1's auc: 0.786804

可视化

python 复制代码
# Plotting metrics recorded during training
ax = lgb.plot_metric(eval_results, metric='auc')
plt.show()

Step 6: Evaluating

模型得分

python 复制代码
def get_adjusted_prediction(y_score, threshold=0.5):
    y_pred = y_score.copy()
    y_pred[y_score>=threshold] = 1
    y_pred[y_score< threshold] = 0
    return y_pred

def classification_report(model, X, y):
    from sklearn.metrics import balanced_accuracy_score
    report = {}
    y_true = y
    y_score = model.predict(X) 
    if y_score.ndim >= 2:
        y_pred = np.argmax(y_score)
    else:
        y_pred = (y_score > 0.5).astype(int)
    fpr, tpr, thresholds = roc_curve(y_true, y_score) 
    
    idx = (tpr - fpr).argmax()
    adjusted_threshold = thresholds[idx]
    adjusted_y_pred = (y_score > adjusted_threshold).astype(int) 
    return {
        'y_pred': y_pred,
        'y_score': y_score,
        'fpr': fpr,
        'tpr': tpr, 
        'thresholds': thresholds,
        'ks': (tpr - fpr).max(),
        'auc': roc_auc_score(y_true, y_score),
        'accuracy': accuracy_score(y_true, y_pred),
        'balanced_accuracy_score': balanced_accuracy_score(y_true, y_pred),
        'precision': precision_score(y_true, y_pred),
        'recall': recall_score(y_true, y_pred),
        'f1-score': fbeta_score(y_true, y_pred, beta=1),
        'adjusted_threshold': adjusted_threshold,
        'adjusted_accuracy': accuracy_score(y_true, adjusted_y_pred)
    }
# the model performance
train_report = classification_report(bst, X_train, y_train)
valid_report = classification_report(bst, X_valid, y_valid)
for label, stats in [('train data', train_report), ('valid data', valid_report)]:
    print(label, ":")
    print(
        f"auc: {stats['auc']:.5f}", 
        f"accuracy: {stats['accuracy']:.5f}", 
        f"balanced_accuracy_score: {stats['balanced_accuracy_score']:.5f}",
        f"adjusted_accuracy(threshold = {stats['adjusted_threshold']:.4f}): {stats['adjusted_accuracy']:.5f}", 
        f"recall: {stats['recall']:.5f}", 
        sep = '\n\t'
    )
train data :
auc: 0.85211
	accuracy: 0.75527
	balanced_accuracy_score: 0.77060
	adjusted_accuracy(threshold = 0.4885): 0.74530
	recall: 0.78888
valid data :
auc: 0.78680
	accuracy: 0.73706
	balanced_accuracy_score: 0.71237
	adjusted_accuracy(threshold = 0.4526): 0.69454
	recall: 0.68293

ROC曲线

python 复制代码
# Plot ROC curve
def plot_roc_curve(fprs, tprs, labels):
    from sklearn import metrics
    plt.figure()
    plt.title('Receiver Operating Characteristic')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.plot([0, 1], [0, 1],'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    # Plotting ROC and computing AUC scores
    for fpr, tpr, label in zip(fprs, tprs, labels):
    	auc = metrics.auc(fpr, tpr)
    	plt.plot(fpr, tpr, label = f"{label} ROC(auc={auc:.4f})")
    plt.legend(loc = 'lower right')

plot_roc_curve(
    fprs = (train_report['fpr'], valid_report['fpr']),
    tprs = (train_report['tpr'], valid_report['tpr']),
    labels = ('train', 'valid')
)

模型稳定性

PSI(Population Stability Index)指标反映了实际分布(actual)与预期分布(expected)的差异。在建模中,我们常用来筛选特征变量、评估模型稳定性。其中,在建模时通常以训练样本(In the Sample, INS)作为预期分布,而验证样本在各分数段的分布通常作为实际分布。验证样本一般包括样本外(Out of Sample, OOS)和跨时间样本(Out of Time, OOT)。

风控模型常用PSI衡量模型的稳定性。

python 复制代码
def calc_psi(expected, actual, n_bins=10):
    '''
    Calculate the PSI (Population Stability Index) for two vectors.
    
    Args:
        expected: array-like, represents the expected distribution.
        actual: array-like, represents the actual distribution.
        bins: int, the number of bins to use in the histogram.
    
    Returns:
    float, the PSI value.
    '''
    # Calculate the expected frequencies in each bin
    buckets, bins = pd.qcut(expected, n_bins, retbins=True, duplicates='drop')
    expected_freq = buckets.value_counts() 
    expected_freq = expected_freq / expected_freq.sum()
    
    # Calculate the actual frequencies in each bin
    bins = [-np.inf] + list(bins)[1: -1] + [np.inf]
    actual_freq = pd.cut(actual, bins).value_counts()
    actual_freq = actual_freq / actual_freq.sum()
    
    # Calculate PSI
    psi = (actual_freq - expected_freq) * np.log(actual_freq / expected_freq)
    return psi.sum()

psi = calc_psi(train_report['y_score'], valid_report['y_score'])
print("PSI:", psi)
PSI: 0.00019890720303521737

绘制实际分布与预期分布曲线

python 复制代码
plt.figure(figsize=(8, 4)) 
sns.kdeplot(x=train_report['y_score'], label='train')
sns.kdeplot(x=valid_report['y_score'], label='valid')
plt.legend(loc='best')
plt.title(label = 'Frequency', loc ='center') 

验证集正负样本分布曲线

python 复制代码
valid_pred = pd.DataFrame({'score': valid_report['y_score'], 'target': y_valid})

plt.figure(figsize=(8, 4)) 
sns.kdeplot(data=valid_pred, x='score', hue='target', common_norm=False)
plt.title(label = 'Frequency', loc ='center') 

验证集正负样本累积分布

python 复制代码
plt.figure(figsize=(8, 4)) 
sns.kdeplot(data=valid_pred, x='score', hue='target', common_norm=False, cumulative=True)
plt.title(label = 'Cumulative', loc ='center') 

Step 7: Show feature importance

python 复制代码
feature_imp = pd.Series(
    bst.feature_importance(), 
    index=bst.feature_name()
).sort_values(ascending=False)

print(feature_imp.head(20))
feature_imp.to_excel(path + 'feature_importance.xlsx')
AMT_ANNUITY_/_AMT_CREDIT                           776
MODE(previous.PRODUCT_COMBINATION)                 590
MODE(installments.previous.PRODUCT_COMBINATION)    475
MODE(cash.previous.PRODUCT_COMBINATION)            355
EXT_SOURCE_2_+_EXT_SOURCE_3                        312
MAX(bureau.DAYS_CREDIT_ENDDATE)                    296
MAX(bureau.DAYS_CREDIT)                            281
MODE(previous.NAME_GOODS_CATEGORY)                 274
MODE(installments.previous.NAME_GOODS_CATEGORY)    270
MEAN(bureau.AMT_CREDIT_SUM_DEBT)                   252
MODE(cash.previous.NAME_GOODS_CATEGORY)            248
AMT_GOODS_PRICE_/_AMT_ANNUITY                      232
MEAN(previous.MEAN(cash.CNT_INSTALMENT_FUTURE))    210
frequency(CODE_GENDER_M)_by(EXT_SOURCE_1)          196
AMT_CREDIT_-_AMT_GOODS_PRICE                       195
SUM(bureau.AMT_CREDIT_SUM)                         192
SUM(bureau.AMT_CREDIT_MAX_OVERDUE)                 191
EXT_SOURCE_1_/_DAYS_BIRTH                          182
MAX(cash.previous.DAYS_LAST_DUE_1ST_VERSION)       178
DAYS_BIRTH_/_EXT_SOURCE_1                          176
dtype: int32
python 复制代码
# Plotting feature importances
ax = lgb.plot_importance(bst, max_num_features=20)
plt.show()

观察重点特征的分布

python 复制代码
X_valid.columns = X_valid.columns.str.replace(' ', '_')

for col in feature_imp.index[:10]:
    table = pd.DataFrame({col: X_valid[col], 'label': y_valid})
    if table[col].dtype in [np.float32, np.int32]:
        table[f'{col}_binned'] = pd.qcut(table[col], 5, duplicates='drop')
    else:
        table[f'{col}_binned'] = table[col] 
    print(table.pivot_table(
        index=f'{col}_binned', 
        columns='label',
        values='label',
        aggfunc='count')
    )
    if table[f'{col}_binned'].nunique() <= 5:
        sns.violinplot(
            data=table, 
            x=f'{col}_binned',
            y=valid_report['y_score'],
            hue='label',
            split=True
        )
        plt.show()
label                                0     1
AMT_ANNUITY_/_AMT_CREDIT_binned             
(0.015799999999999998, 0.0332]   14353  1039
(0.0332, 0.0463]                 14392   974
(0.0463, 0.0512]                 13906  1499
(0.0512, 0.0682]                 13890  1450
(0.0682, 0.124]                  14146  1229
label                                          0     1
MODE(previous.PRODUCT_COMBINATION)_binned             
Card Street                                 6497   729
Card X-Sell                                 3161   274
Cash                                       12431  1234
Cash Street: high                           2147   240
Cash Street: low                             918    81
Cash Street: middle                          910    91
Cash X-Sell: high                           1695   207
Cash X-Sell: low                            2944   169
Cash X-Sell: middle                         3851   323
POS household with interest                17801  1333
POS household without interest              3204   205
POS industry with interest                  4379   282
POS industry without interest                474    17
POS mobile with interest                    8690   875
POS mobile without interest                  685    54
POS other with interest                      816    73
POS others without interest                   84     4
label                                                   0     1
MODE(installments.previous.PRODUCT_COMBINATION)...             
Card Street                                          4039   472
Card X-Sell                                          5686   628
Cash Street: high                                    2265   259
Cash Street: low                                      903    77
Cash Street: middle                                  1300   128
Cash X-Sell: high                                    2132   251
Cash X-Sell: low                                     4010   193
Cash X-Sell: middle                                  5394   394
POS household with interest                         19706  1657
POS household without interest                       5942   412
POS industry with interest                           6274   424
POS industry without interest                         828    31
POS mobile with interest                             9593  1032
POS mobile without interest                          1086    97
POS other with interest                              1369   127
POS others without interest                           160     9
label                                               0     1
MODE(cash.previous.PRODUCT_COMBINATION)_binned             
Cash Street: high                                2695   340
Cash Street: low                                 1053    95
Cash Street: middle                              1554   171
Cash X-Sell: high                                2544   315
Cash X-Sell: low                                 4653   258
Cash X-Sell: middle                              6635   496
POS household with interest                     22600  1994
POS household without interest                   6767   494
POS industry with interest                       6970   493
POS industry without interest                     923    35
POS mobile with interest                        11399  1241
POS mobile without interest                      1219   112
POS other with interest                          1498   136
POS others without interest                       177    11
label                                   0     1
EXT_SOURCE_2_+_EXT_SOURCE_3_binned             
(0.00013999999999999993, 0.799]     12583  2793
(0.799, 0.987]                      13994  1381
(0.987, 1.132]                      14411   965
(1.132, 1.264]                      14688   687
(1.264, 1.681]                      15011   365
label                                       0     1
MAX(bureau.DAYS_CREDIT_ENDDATE)_binned             
(-41875.001, 80.0]                      14445   941
(80.0, 823.0]                           14358  1014
(823.0, 983.0]                          13918  1453
(983.0, 1735.0]                         13997  1399
(1735.0, 31199.0]                       13969  1384
label                               0     1
MAX(bureau.DAYS_CREDIT)_binned             
(-2922.001, -661.0]             14554   825
(-661.0, -327.0]                14371  1031
(-327.0, -273.0]                13949  1408
(-273.0, -134.0]                14068  1326
(-134.0, -1.0]                  13745  1601
label                                          0     1
MODE(previous.NAME_GOODS_CATEGORY)_binned             
Additional Service                            10     0
Audio/Video                                 6458   469
Auto Accessories                             467    42
Clothing and Accessories                    1541    89
Computers                                   5827   482
Construction Materials                      1432   104
Consumer Electronics                        5977   422
Direct Sales                                  29     5
Education                                     13     1
Fitness                                       17     1
Furniture                                   2578   143
Gardening                                    129     5
Homewares                                    242    15
Insurance                                      0     0
Jewelry                                      247    24
Medical Supplies                             256    10
Medicine                                     112     7
Mobile                                      9794   935
Office Appliances                             50     2
Other                                         49     5
Photo / Cinema Equipment                     550    56
Sport and Leisure                             79    13
Tourism                                       78     3
Vehicles                                     140    12
Weapon                                         5     0
XNA                                        34607  3346
label                                                   0     1
MODE(installments.previous.NAME_GOODS_CATEGORY)...             
Additional Service                                      9     0
Animals                                                 1     0
Audio/Video                                          6092   497
Auto Accessories                                      347    51
Clothing and Accessories                             1604    88
Computers                                            6324   542
Construction Materials                               1571   121
Consumer Electronics                                 7279   562
Direct Sales                                           13     4
Education                                              14     1
Fitness                                                22     1
Furniture                                            3235   208
Gardening                                             175     7
Homewares                                             363    29
Insurance                                               0     0
Jewelry                                               238    29
Medical Supplies                                      400    17
Medicine                                              162     9
Mobile                                              10152  1046
Office Appliances                                      90     9
Other                                                 100     7
Photo / Cinema Equipment                             1115   103
Sport and Leisure                                     150    18
Tourism                                               106     4
Vehicles                                              261    28
Weapon                                                  6     0
XNA                                                 30858  2810
label                                        0     1
MEAN(bureau.AMT_CREDIT_SUM_DEBT)_binned             
(-220213.42299999998, 0.0]               16805   994
(0.0, 39052.254]                         12066   886
(39052.254, 49487.143]                   13928  1448
(49487.143, 148125.9]                    13904  1471
(148125.9, 43650000.0]                   13984  1392

Step 8: Visualize the model

python 复制代码
# Plotting split value histogram
ax = lgb.plot_split_value_histogram(bst, feature='AMT_ANNUITY_/_AMT_CREDIT', bins='auto')
plt.show()
python 复制代码
# Plotting 54th tree (one tree use categorical feature to split)
# ax = lgb.plot_tree(bst, tree_index=53, figsize=(15, 15), show_info=['split_gain'])
# plt.show()

# Plotting 54th tree with graphviz
# graph = lgb.create_tree_digraph(bst, tree_index=53, name='Tree54')
# graph.render(view=True)

Step 9: Model persistence

python 复制代码
# Save model to file
print('Saving model...')
bst.save_model(path + 'lgb_model.txt')   
Saving model...

<lightgbm.basic.Booster at 0x2c457d3a0>

Step 10: Predict

python 复制代码
# Perform predictions
# If early stopping is enabled during training, you can get predictions from the best iteration with bst.best_iteration.
predictions = bst.predict(X_valid, num_iteration=bst.best_iteration)
python 复制代码
# Load a saved model to predict 
print('Loading model to predict...')
bst = lgb.Booster(model_file=path + 'lgb_model.txt')
predictions = bst.predict(X_valid)
Loading model to predict...
python 复制代码
# Save predictions
# predictions.to_csv('valid_predictions.csv', index=True)

Appendices: FocalLoss

python 复制代码
import numpy as np
from scipy import optimize, special
 
class BinaryFocalLoss:
    def __init__(self, gamma, alpha=None):
        # 使用FocalLoss只需要设定以上两个参数,如果alpha=None,默认取值为1
        self.alpha = alpha
        self.gamma = gamma

    def at(self, y):
        # alpha 参数, 根据FL的定义函数,正样本权重为self.alpha,负样本权重为1 - self.alpha
        if self.alpha is None:
            return np.ones_like(y)
        return np.where(y, self.alpha, 1 - self.alpha)

    def pt(self, y, p):
        # pt和p的关系
        p = np.clip(p, 1e-15, 1 - 1e-15)
        return np.where(y, p, 1 - p)

    def __call__(self, y_true, y_pred):
        # 即FL的计算公式
        at = self.at(y_true)
        pt = self.pt(y_true, y_pred)
        return -at * (1 - pt) ** self.gamma * np.log(pt)

    def grad(self, y_true, y_pred):
        # 一阶导数
        y = 2 * y_true - 1  # {0, 1} -> {-1, 1}
        at = self.at(y_true)
        pt = self.pt(y_true, y_pred)
        g = self.gamma
        return at * y * (1 - pt) ** g * (g * pt * np.log(pt) + pt - 1)

    def hess(self, y_true, y_pred):
        # 二阶导数
        y = 2 * y_true - 1  # {0, 1} -> {-1, 1}
        at = self.at(y_true)
        pt = self.pt(y_true, y_pred)
        g = self.gamma

        u = at * y * (1 - pt) ** g
        du = -at * y * g * (1 - pt) ** (g - 1)
        v = g * pt * np.log(pt) + pt - 1
        dv = g * np.log(pt) + g + 1

        return (du * v + u * dv) * y * (pt * (1 - pt))

    def init_score(self, y_true):
        # 样本初始值寻找过程
        res = optimize.minimize_scalar(
            lambda p: self(y_true, p).sum(),
            bounds=(0, 1),
            method='bounded'
        )
        p = res.x
        log_odds = np.log(p / (1 - p))
        return log_odds

    def objective(self, y_true, y_pred):
        y = y_true
        p = special.expit(y_pred)
        return self.grad(y, p), self.hess(y, p)

    def evaluate(self, y_true, y_pred):
        y = y_true
        p = special.expit(y_pred)
        is_higher_better = False
        return 'focal_loss', self(y, p).mean(), is_higher_better

    def fobj(self, preds, train_data):
        '''lightgbm'''
        y = train_data.get_label()
        p = special.expit(preds)
        return self.grad(y, p), self.hess(y, p)

    def feval(self, preds, train_data):
        '''lightgbm'''
        y = train_data.get_label()
        p = special.expit(preds)
        is_higher_better = False
        return 'focal_loss', self(y, p).mean(), is_higher_better
    
class SparseCategoricalFocalLoss:
    pass

Ensembles

有时候模型集成可以取得不错的效果。常用的模型集成包括:

  • Votting:简单投票或加权平均
  • Stacking:简单来说就是学习各个基本模型的预测值来预测最终的结果

我们初步选用 Stacking 集成学习器,采用 LogisticRegression、SVC、GaussianNB、SGDClassifier 、RandomForestClassifier、HistGradientBoostingClassifier作为基分类器。

导入必要的包

python 复制代码
import pandas as pd
import numpy as np
import copy
import json
import pickle
import joblib
import lightgbm as lgb
import optuna
import warnings
import gc

from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import HistGradientBoostingClassifier

from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.metrics import roc_auc_score
from sklearn.base import clone
import matplotlib.pyplot as plt
import seaborn as sns

# Setting configuration.
pd.set_option('display.float_format', lambda x: '%.5f' %x)
warnings.filterwarnings('ignore')
sns.set_style('whitegrid')
optuna.logging.set_verbosity(optuna.logging.WARNING)

SEED = 42

创建数据集

python 复制代码
print('Loading data...')
path = '../datasets/Home-Credit-Default-Risk/selected_data.csv'
df = pd.read_csv(path, index_col='SK_ID_CURR')
Loading data...
python 复制代码
# Split data into training and testing sets
X_train, X_valid, y_train, y_valid = train_test_split(
    df.drop(columns="TARGET"), 
    df["TARGET"], 
    test_size=0.25, 
    random_state=SEED
)

print("X_train shape:", X_train.shape)
print('train:', y_train.value_counts(), sep='\n') 
print('valid:', y_valid.value_counts(), sep='\n')
X_train shape: (230633, 835)
train:
TARGET
0    211999
1     18634
Name: count, dtype: int64
valid:
TARGET
0    70687
1     6191
Name: count, dtype: int64

无序分类(unordered)特征原始编码对于树集成模型(tree-ensemble like XGBoost)是可用的,但对于线性回归模型(like Lasso or LogisticRegression)则必须使用one-hot重编码。因此,我们先把数据重编码。

python 复制代码
# Specific feature names and categorical features
feature_name = X_train.columns.tolist()
categorical_feature = X_train.select_dtypes(object).columns.tolist()
python 复制代码
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import make_column_transformer

# Encode categorical features
encoder = make_column_transformer(
    (OneHotEncoder(
        drop='if_binary', 
        min_frequency=0.02, 
        max_categories=20, 
        sparse_output=False,
        handle_unknown='ignore'
    ), categorical_feature),
    remainder='passthrough', 
    verbose_feature_names_out=False,
    verbose=True    
)

print('fitting...')
encoder.fit(X_train)

print('encoding...')
train_dummies = encoder.transform(X_train)
valid_dummies = encoder.transform(X_valid)
print('train data shape:', X_train.shape)
fitting...
[ColumnTransformer] . (1 of 2) Processing onehotencoder, total=   4.7s
[ColumnTransformer] ..... (2 of 2) Processing remainder, total=   0.0s
encoding...
train data shape: (230633, 835)
python 复制代码
del df, X_train, X_valid
gc.collect()
2948

创建优化器

先定义一个评估函数

python 复制代码
# Define a cross validation strategy
# We use the cross_val_score function of Sklearn. 
# However this function has not a shuffle attribute, we add then one line of code, 
# in order to shuffle the dataset prior to cross-validation

def evaluate(model, X, y, n_folds = 5, verbose=True):
    kf = KFold(n_folds, shuffle=True, random_state=SEED).get_n_splits(X)
    scores = cross_val_score(
        model, 
        X, 
        y, 
        scoring="roc_auc", 
        cv = kf
    )
    if verbose:
        print(f"valid auc: {scores.mean():.3f} +/- {scores.std():.3f}")
    return scores.mean()

然后,我们定义一个优化器,对这些基分类器超参数调优。

python 复制代码
class Objective:
    estimators = (
  	    LogisticRegression, 
  	    SGDClassifier, 
  	    GaussianNB, 
  	    RandomForestClassifier, 
  	    HistGradientBoostingClassifier
  	)
    def __init__(self, estimator, X, y):
  	    # assert isinstance(estimator, estimators), f"estimator must be one of {estimators}"
        self.model = estimator
        self.X = X
        self.y = y
    
    def __call__(self, trial):
        # Create hyperparameter space
        if isinstance(self.model, LogisticRegression): 
            search_space = dict(
                class_weight = 'balanced', 
                C = trial.suggest_float('C', 0.01, 100.0, log=True),
                l1_ratio = trial.suggest_float('l1_ratio', 0.0, 1.0)  # The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1.
            )
        
        
        elif isinstance(self.model, SGDClassifier): 
            search_space = dict(
                class_weight = 'balanced', 
                loss = trial.suggest_categorical('loss', ['hinge', 'log_loss', 'modified_huber']), 
                alpha = trial.suggest_float('alpha', 1e-5, 10.0, log=True),
                penalty = 'elasticnet',
                l1_ratio = trial.suggest_float('l1_ratio', 0.0, 1.0),
                early_stopping = True
            )
        
        elif isinstance(self.model, GaussianNB): 
            search_space = dict(
            priors = None
            )
        
        elif isinstance(self.model, RandomForestClassifier): 
            search_space = dict(
                class_weight = 'balanced', 
                n_estimators = trial.suggest_int('n_estimators', 50, 500, step=50),
                max_depth = trial.suggest_int('max_depth', 2, 20),
                max_features = trial.suggest_float('max_features', 0.2, 0.9),
                random_state = SEED
            )
        
        elif isinstance(self.model, HistGradientBoostingClassifier): 
            search_space = dict(
                class_weight = 'balanced', 
                learning_rate = trial.suggest_float('learning_rate', 1e-3, 10.0, log=True),
                max_iter = trial.suggest_int('max_iter', 50, 500, step=50),
                max_depth = trial.suggest_int('max_depth', 2, 20),
                max_features = trial.suggest_float('max_features', 0.2, 0.9),
                l2_regularization = trial.suggest_float('l2_regularization', 1e-3, 10.0, log=True),
                random_state = SEED,
                verbose = 0
            )
    
        # Setting hyperparameters
        self.model.set_params(**search_space) 
    
        # Training with 5-fold CV:
        score = evaluate(self.model, self.X, self.y)
        return score

超参数优化

并行执行贝叶斯优化

python 复制代码
def timer(func):
    import time
    import functools
    def strfdelta(tdelta, fmt):
        hours, remainder = divmod(tdelta, 3600)
        minutes, seconds = divmod(remainder, 60)
        return fmt.format(hours, minutes, seconds)
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        click = time.time()
        result = func(*args, **kwargs)
        delta = strfdelta(time.time() - click, "{:.0f} hours {:.0f} minutes {:.0f} seconds")
        print(f"{func.__name__} cost time {delta}")
        return result
    return wrapper

# Creating a pipeline & Hyperparameter tuning

@timer
def tuning(model, X, y):
    # create a study object
    study = optuna.create_study(direction="maximize")
    # Invoke optimization of the objective function.
    objective = Objective(model, X, y)
    study.optimize(
        objective, 
        n_trials = 50,
        timeout = 2400,
        gc_after_trial = True,
        show_progress_bar = True
    )
    print(model, 'best score:', study.best_value) 
    return study
python 复制代码
Objective.estimators
(sklearn.linear_model._logistic.LogisticRegression,
 sklearn.linear_model._stochastic_gradient.SGDClassifier,
 sklearn.naive_bayes.GaussianNB,
 sklearn.ensemble._forest.RandomForestClassifier,
 sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)
python 复制代码
# opt_results = []
# for model in Objective.estimators:
#     study = tuning(model(), train_dummies, y_train)
#     opt_results.append(study)
#     print(model)
#     print(study.best_trial.params)

模型训练

集成模型调优

python 复制代码
# define the search space and the objecive function
def stacking_obj(trial):
    stacking = StackingClassifier(
        # The `estimators` parameter corresponds to the list of the estimators which are stacked.
        estimators = [
            ('Logit', LogisticRegression(
                class_weight = 'balanced', 
                C = trial.suggest_float('Logit__C', 0.01, 100.0, log=True),
                l1_ratio = trial.suggest_float('Logit__l1_ratio', 0.0, 1.0)  # The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1.
            )),
            ('SGD', SGDClassifier(
                class_weight = 'balanced', 
                loss = trial.suggest_categorical('SGD__loss', ['hinge', 'log_loss', 'modified_huber']), 
                alpha = trial.suggest_float('SGD__alpha', 1e-5, 10.0, log=True),
                penalty = 'elasticnet',
                l1_ratio = trial.suggest_float('SGD__l1_ratio', 0.0, 1.0),
                early_stopping = True
            )),
            ('GaussianNB', GaussianNB())
        ],
        # The final_estimator will use the predictions of the estimators as input
        final_estimator = LogisticRegression(
            class_weight = 'balanced', 
            C = trial.suggest_float('final__C', 0.01, 100.0, log=True),
            # The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1.
            l1_ratio = trial.suggest_float('final__l1_ratio', 0.0, 1.0)  
        ),
        verbose = 1
    )
    score = evaluate(stacking, train_dummies, y_train, n_folds = 3)
    return score
python 复制代码
# create a study object.
study = optuna.create_study(
    study_name = 'stacking-study',  # Unique identifier of the study.
    direction = 'maximize'
)

# Invoke optimization of the objective function.
study.optimize(
    stacking_obj, 
    n_trials = 100, 
    timeout = 3600,
    gc_after_trial = True,
    show_progress_bar = True
)
valid auc: 0.676 +/- 0.017
valid auc: 0.669 +/- 0.021
valid auc: 0.673 +/- 0.016
valid auc: 0.451 +/- 0.121
valid auc: 0.592 +/- 0.045
valid auc: 0.666 +/- 0.017
valid auc: 0.675 +/- 0.014
valid auc: 0.666 +/- 0.021
valid auc: 0.672 +/- 0.016
valid auc: 0.667 +/- 0.021
valid auc: 0.672 +/- 0.012
python 复制代码
joblib.dump(study, path + "stacking-study.pkl")

study = joblib.load(path + "stacking-study.pkl")

print("Best trial until now:")
print(" Value: ", study.best_trial.value)
print(" Params: ")
for key, value in study.best_trial.params.items():
    print(f"    {key}: {value}")
Best trial until now:
 Value:  0.6761396385434888
 Params: 
    Logit__C: 0.020329668727865235
    Logit__l1_ratio: 0.5165207006926232
    SGD__loss: modified_huber
    SGD__alpha: 1.6638099778831132
    SGD__l1_ratio: 0.7330208370976262
    final__C: 14.1468564043383
    final__l1_ratio: 0.4977751012657087
python 复制代码
stacking = StackingClassifier(
    # The `estimators` parameter corresponds to the list of the estimators which are stacked.
    estimators = [
        ('Logit', LogisticRegression(
            class_weight = 'balanced', 
            C = 0.020329668727865235,
            l1_ratio = 0.5165207006926232  # The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1.
        )),
        ('SGD', SGDClassifier(
            class_weight = 'balanced', 
            loss = 'modified_huber', 
            alpha = 1.6638099778831132,
            penalty = 'elasticnet',
            l1_ratio = 0.7330208370976262,
            early_stopping = True
        )),
        ('GaussianNB', GaussianNB())
    ],
    # The final_estimator will use the predictions of the estimators as input
    final_estimator = LogisticRegression(
        class_weight = 'balanced', 
        C = 14.1468564043383,
        # The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1.
        l1_ratio = 0.4977751012657087 
    ),
    verbose = 1
)

score = evaluate(stacking, train_dummies, y_train)
valid auc: 0.674 +/- 0.009
python 复制代码
stacking.fit(train_dummies, y_train)

train_auc = roc_auc_score(y_train, stacking.predict_proba(train_dummies)[:, 1])
valid_auc = roc_auc_score(y_valid, stacking.predict_proba(valid_dummies)[:, 1])
print('train auc:', train_auc)
print('valid auc:', valid_auc)
train auc: 0.6753919322392181
valid auc: 0.6752015627178207
相关推荐
Wen.py.java18 分钟前
Python商务数据分析知识专栏(六)——Python数据分析的应用④Python数据分析实训
人工智能·python·数据分析
不要em0啦23 分钟前
PyTorch - 神经网络基础
人工智能·pytorch·神经网络
pictoexcel1 小时前
名片批量转换为结构化Excel注意的事项
人工智能·深度学习·神经网络·机器学习·ocr·excel
三花AI1 小时前
对标 GPT-4o 的开源实时语音多模态模型:Moshi
人工智能·gpt·语言模型·语音识别
Hugo_Hoo2 小时前
构建LangChain应用程序的示例代码:53、利用多模态大型语言模型在RAG应用中处理混合文档的示例
人工智能·langchain·ai编程
人工智能小豪2 小时前
LLM大模型企业应用实战-----为Langchain Agent添加记忆功能
人工智能·langchain·大模型·llm·私有化部署·产品经理·ai大模型
Elfin_z2 小时前
【深度学习练习】心脏病预测
人工智能·深度学习
山东仁科2 小时前
现代农业利器:土壤检测仪器的应用与未来
人工智能·土壤监测
迅腾文化2 小时前
品牌推广的深层逻辑:自我提升与市场认同的和谐共生
大数据·人工智能·物联网·信息可视化·媒体
九芯电子2 小时前
语音声控灯:置入NRK3301离线语音识别ic 掌控的灯具新风尚
人工智能·语音识别