最近常用的几个【行操作】的Pandas函数

最近在做交易数据的统计分析时,多次用到数据行之间的一些操作,对于其中的细节,简单做了个笔记。

1. shfit函数

shift函数在策略回测代码中经常出现,计算交易信号持仓信号 以及资金曲线 时都有涉及。

这个函数的主要作用是将某列的值上下移动。

默认情况下,shift函数是向下移动一行,

移动后,新数据列的第一行数据用NaN(空值)填充,原始数据列的最后一行丢弃。

python 复制代码
import pandas as pd

df = pd.DataFrame({
    "A": [1, 2, 3, 4, 5, 6],
    "B": [2, 3, 4, 2, 4, 5],
    "C": [5, 6, 7, 1, 3, 4],
}, dtype=float)

# 默认 shift()
df["C-shift()"] = df["C"].shift()
print(df)

也可以在shift函数中指定移动的行数,比如下面的代码下移3行

python 复制代码
df["C-shift(3)"] = df["C"].shift(3)
print(df)

指定的行数为负值时,表示向上移动,此时,下面的部分用NaN填充。

python 复制代码
df["C-shift(-3)"] = df["C"].shift(-3)
print(df)

shift之后一般会在 首部/尾部 产生NaN空值,根据情况看是否需要进一步处理。

2. 不同行数的列赋值

shift函数还是比较好理解的,

下面这个操作比shift稍微复杂一些。

为了简化,创建两个测试数据:

python 复制代码
df1 = pd.DataFrame({
    "A": [1, 2, 3, 4, 5, 6],
    "B": [2, 3, 4, 2, 4, 5],
    "C": [5, 6, 7, 1, 3, 4],
})

df2 = pd.DataFrame({
    "D": [110, 100],
})

print(df1, df2)

df2只有2行df16行 ,此时,把df2D列 赋值给df1时,
pandas会自动比较df1df2index(索引,也就是上图中红色框内部分),只赋值具有相同index的行。

python 复制代码
df1["D"] = df2["D"]
print(df1)

改变df2index,再次赋值看看:

python 复制代码
df2 = pd.DataFrame({
    "D": [110, 100],
}, index=[4, 7])

df1["D"] = df2["D"]
print(df1)


df2index=4时能和df1匹配,所以赋值之后,只有index=4那行赋给了df1
df2index=7那行没匹配上,就直接丢弃了。

所以,不同行数的两个数据集互相赋值时,比不是从上而下按行赋值,而是根据两个数据的index来匹配赋值的。

这时,再回头看计算交易信号 的代码,temp虽然经过过滤之后,行数比df要少,但是过滤之后的每行数据会根据对应的index准确的赋给df中相同index的行。

3. pct_change函数

pct_change函数用来计算数据百分比变化的。

具体的计算规则是,当前行数据 减去 上一行数据 ,得出的结果再 除以 上一行数据

比如:

python 复制代码
df = pd.DataFrame({
    "A": [1, 2, 3, 4, 5, 6],
    "B": [2, 3, 4, 2, 4, 5],
    "C": [5, 6, 7, 1, 3, 4],
}, dtype=float)

df["C_percent"] = df["C"].pct_change()

第一行数据因为没有上一行数据,所以是 NaN

这和shift函数一样,处理完之后,别忘了填充第一行的NaN

同样,pct_change()可以传入参数跨越多行。

python 复制代码
df["C_percent"] = df["C"].pct_change(3)

向上3行 ,也就是隔两行 计算变化百分比,这里就会产生3个NaN

pct_change()还可以传入负值,传入负值时的计算规则变为:
当前行数据 减去 下一行数据 ,得出的结果再 除以 下一行数据

比如:

python 复制代码
df["C_percent"] = df["C"].pct_change(-1)

这样,空值NaN出现最后一行,因为最后一行没有下一行。

4. cumprod函数

cumprod函数用来计算累积乘积的。

具体的计算规则是,若 当前行 是第一行,则直接用 **当前行数据 **作为 累积乘积结果

当前行 不是第一行,则用 **当前行数据 **乘以 上一行累积乘积结果 ,得出的结果作为 当前行累积乘积结果

比如:

python 复制代码
df["C_cumprod"] = df["C"].cumprod()


cumprod函数不能像shiftpct_change那样可以传入数值或负数参数,只有默认的逐行累积计算。

5. 总结

在分析交易信息,特别是统计收益和收益率的变化时,上面几个函数能帮助我们极大简化代码,避免写各种复杂的循环。

相关推荐
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij3 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
敲键盘的小夜猫4 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain
高压锅_12204 小时前
Django Channels WebSocket实时通信实战:从聊天功能到消息推送
python·websocket·django
胖达不服输6 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩6 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩6 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落6 小时前
计算阶梯电费
python·python 基础·python 入门
Python大数据分析@7 小时前
Origin、MATLAB、Python 用于科研作图,哪个最好?
开发语言·python·matlab