北大&字节提出VAR新范式,GPT超越扩散、视觉生成Scaling Law

前言

来自北京大学和字节跳动的研究团队,提出了一种名为"Visual AutoRegressive (VAR) Modeling"的全新视觉生成范式。VAR 重新定义了图像的自回归学习过程,从而使得GPT风格的自回归模型首次超越扩散模型,在图像生成质量、速度和可扩展性等多方面都取得了突破性进展。

VAR核心思想:模仿人类视觉认知

VAR的核心思想源于人类感知和创造图像的逻辑顺序。相比计算机常用的自上而下、逐行扫描的方式,人类更倾向于先把握全局结构,然后逐步深入细节。

VAR正是借鉴了这种由粗到细的多尺度思路,定义图像的自回归顺序为"下一个更高分辨率的token图谱预测",而非传统的"下一个token预测"。具体来说,VAR首先使用多尺度量化自编码器(VQVAE)将图像编码为不同分辨率的离散token图谱,然后训练一个自回归Transformer,从最低分辨率的1x1图谱开始,逐步预测出更高分辨率的token图谱。

这种设计不仅更符合人类直觉,而且在计算效率上也有很大优势:在每个尺度内,token是并行生成的,而非传统自回归模型的逐个顺序生成,从而大幅提升了推理速度。

VAR性能超越Diffusion

通过在ImageNet 256x256和512x512数据集上的实验,VAR在多个维度都展现出了卓越的表现:

  • 在图像质量指标上,VAR取得了FID 1.80、IS 356.4的SOTA水平,大幅超越了之前自回归模型的表现。
  • 在推理速度上,VAR仅需10步采样就能生成图像,是传统自回归模型快20倍,接近GAN模型的效率。
  • 在可扩展性方面,VAR通过增大模型规模到2B/3B参数,性能持续提升,与大语言模型(LLM)的Scaling Law相似,而Diffusion Transformer等模型在更大规模下却出现饱和。

这些结果充分证明,VAR不仅在性能上超越了Diffusion模型,在计算效率和可扩展性上也更加优秀,开启了自回归视觉生成模型的新纪元。

发现视觉Scaling Law

与大语言模型(LLM)类似,VAR在训练过程中也呈现出清晰的幂律Scaling Law特征:

  • 模型参数量N增大,测试集损失L和错误率Err呈现幂律下降,相关系数接近-0.998,证明了强大的可预测性。
  • 在计算开销Cmin增大时,测试集损失L和错误率Err也遵循幂律降低,相关系数达-0.99,表明VAR拥有出色的计算效率。

这些Scaling Law的发现,不仅验证了VAR的可扩展性,也为未来基于自回归范式的视觉生成模型提供了有力支撑,可借助小模型预测大模型性能,大幅降低开发成本。

零样本泛化能力

VAR还展现出了在一些下游任务上的零样本泛化能力,包括图像补全、外插和类条件编辑等。这表明VAR具有从自身任务迁移到新任务的潜力,与LLM的零样本学习能力相似。

展望未来

总的来说,VAR为视觉自回归建模提供了一种全新的、更符合人类认知的范式,不仅在性能、速度和可扩展性上超越Diffusion,还首次在视觉领域观察到了与LLM相似的Scaling Law和零样本泛化能力。

研究团队开放了VAR的代码、模型和训练数据,希望能够推动自回归在视觉生成领域的进一步发展,为统一的多模态AI算法奠定基础。后续的研究方向包括将VAR应用于视频生成,以及与LLM的进一步融合等。

模型下载

Huggingface模型下载

huggingface.co/FoundationV...

AI快站模型免费加速下载

aifasthub.com/models/Foun...

相关推荐
分布式存储与RustFS8 分钟前
RustFS的边缘计算优化方案在5G MEC场景下的实测数据如何?
人工智能·5g·开源·边缘计算·rustfs
2501_9248905216 分钟前
商超场景徘徊识别误报率↓79%!陌讯多模态时序融合算法落地优化
java·大数据·人工智能·深度学习·算法·目标检测·计算机视觉
Jia-Hui Su33 分钟前
GDSFactory环境配置(PyCharm+Git+KLayout)
git·python·pycharm
SalvoGao37 分钟前
空转学习 | cell-level 与 spot-level的区别
人工智能·深度学习·学习
初岘40 分钟前
自动驾驶GOD:3D空间感知革命
人工智能·3d·自动驾驶
什么都想学的阿超1 小时前
【大语言模型 15】因果掩码与注意力掩码实现:深度学习中的信息流控制艺术
人工智能·深度学习·语言模型
码蛊仙尊1 小时前
当我们想用GPU(nlp模型篇)
人工智能·自然语言处理
LinXunFeng1 小时前
Flutter - 详情页初始锚点与优化
前端·flutter·开源
学习3人组1 小时前
手写数字识别代码
人工智能·python
展信佳_daydayup2 小时前
03 基础篇-润和开发板连接过程
linux·开源·嵌入式