探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(七)前馈神经网络

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(七)前馈神经网络

在Transformer架构中,前馈层扮演着至关重要的角色,通常位于注意力层和标准化处理之后。前馈层由三个线性变换组成。

python 复制代码
class FeedForward(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        # Assuming 'hidden_dim' is calculated as per your specifications
        hidden_dim = 4 * args.dim
        hidden_dim = int(2 * hidden_dim / 3)  # Applying your specific transformation
        if args.ffn_dim_multiplier is not None:
            hidden_dim = int(args.ffn_dim_multiplier * hidden_dim)
        #hidden_dim = int(2 * hidden_dim / 3)  # Applying your specific transformation
        hidden_dim = args.multiple_of * ((hidden_dim + args.multiple_of - 1) // args.multiple_of)

        self.w1 = nn.Linear(args.dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, args.dim, bias=False)  # This layer seems to be missing in your original setup
        self.w3 = nn.Linear(args.dim, hidden_dim, bias=False)  # Corrected to match checkpoint

    def forward(self, x: torch.Tensor):
        swish = F.silu(self.w1(x))  # Apply first transformation
        x_V = self.w3(x) 
        x = swish * x_V        # Apply contraction to original dimension
        x = self.w2(x)  # Apply optional additional transformation
        return x

在前向传递过程中,输入张量x经历多层线性变换。第一次转换后应用的SwiGLU激活函数增强了模型的表达能力。最终的变换将张量映射回其原始维度。 SwiGLU 激活和多个前馈层的这种独特组合增强了模型的性能。


系列博客

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(一)Llama3 模型 架构
https://duanzhihua.blog.csdn.net/article/details/138208650

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(二)RoPE位置编码
https://duanzhihua.blog.csdn.net/article/details/138212328

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(三)KV缓存
https://duanzhihua.blog.csdn.net/article/details/138213306

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(四)分组多查询注意力
https://duanzhihua.blog.csdn.net/article/details/138216050

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(五)RMS 均方根归一化
https://duanzhihua.blog.csdn.net/article/details/138216630

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(六)SwiGLU 激活函数
https://duanzhihua.blog.csdn.net/article/details/138217261

相关推荐
m0_603888714 天前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
三千院本院8 天前
LlaMA_Factory实战微调VL大模型
llama
爱分享的飘哥13 天前
第四十六章:AI的“瞬时记忆”与“高效聚焦”:llama.cpp的KV Cache与Attention机制
llama·llama.cpp·kv cache·attention优化·llm cpu推理·量化attention·gguf推理
psyq14 天前
LLaMA Factory 角色扮演模型微调实践记录
人工智能·llama
liliangcsdn22 天前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
茫茫人海一粒沙22 天前
使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
llama
liliangcsdn24 天前
mac llama_index agent算术式子计算示例
人工智能·python·macos·llama
许愿与你永世安宁25 天前
RAG(检索增强生成)里的文档管理
数据库·人工智能·gpt·oracle·llama·rag
许愿与你永世安宁1 个月前
基于Llama的RAG 3种模型配置方法
人工智能·python·自然语言处理·json·github·llama·faiss
至善迎风1 个月前
本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
docker·容器·llama·kimi