LLaMA Factory微调大模型

本文使用的环境:linux、无网离线环境

一、环境配置

1. 代码下载

bash 复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

2. 依赖安装

bash 复制代码
cd LLaMA-Factory
pip install -e ".[torch,metrics]" 
# pip install -e .
  • .[torch,metrics]是可选依赖包,如果环境中包含了这些依赖包,就不用安装
  • setup.py中可以查看有哪些依赖选项
  • requirements.txt是必须要安装的依赖
  • 离线环境中可以pip download xxx下载编译好的whl包进行离线安装

3.验证

bash 复制代码
llamafactory-cli version 

安装成功后会输出版本号

二、运行

LLaMA Factory有web页面,也可以命令行运行。web页面的本质是图形化设置各项训练参数,生成训练命令进行执行。

1. 启动web页面

bash 复制代码
llamafactory-cli webui
  • 如果是多卡环境,要注意之间的通信内存是多大,如果内存很小,多卡训练是会报错的
  • 指定一张卡进行训练用该命令启动webui:FORCE_TORCHRUN=2 CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli webui

2.设置预训练模型

  • 模型名称:预训练模型名称,会从指定的模型下载源下载该模型。
  • 如果是本地的预训练模型,将模型名称设置为Custom,然后在模型路径处设置本地模型的相对路径。

3.设置数据集

  • 使用自己的数据集需要现在dataset_info.json中添加数据集描述,然后将该数据集放到data目录。
  • dataset_info.json中配置好后,数据集路径选择data,数据集中就可以看到添加的数据集名称了。
  • 对话模板要选择和自己数据集类型匹配的(Alpaca、ShareGPT等)

4.训练参数设置

可以直接在面板中设置LoRA参数、训练超参数、训练过程参数、硬件配置相关等。

5.模型输出位置

设置输出目录,保存在项目的saves文件夹中。

6.模型评估和验证

  • 加载测试数据集进行模型评估,需要设置好数据集路径,这个test数据集也需要在dataset_info.json中添加
  • 加载模型进行对话,先加载,再对话

7.导出模型

设置好参数直接导出

相关推荐
雨中散步撒哈拉2 小时前
16、做中学 | 初三上期 Golang面向对象_进阶
爬虫·python·golang
追风少年ii2 小时前
单细胞空间联合分析新贵--iStar
python·数据分析·空间·单细胞
antonytyler3 小时前
机器学习实践项目(二)- 房价预测增强篇 - 特征工程四
人工智能·python·机器学习
gCode Teacher 格码致知3 小时前
Python教学基础:用Python和openpyxl结合Word模板域写入数据-由Deepseek产生
python·word
饼干,4 小时前
第5天python内容
开发语言·python
ZhengEnCi4 小时前
P3E-Python Lambda表达式完全指南-什么是匿名函数?为什么90%程序员都在用?怎么快速掌握函数式编程利器?
后端·python
Ace_31750887764 小时前
京东商品详情接口深度解析:从反爬绕过到数据结构化重构
数据结构·python·重构
尤利乌斯.X4 小时前
在Java中调用MATLAB函数的完整流程:从打包-jar-到服务器部署
java·服务器·python·matlab·ci/cd·jar·个人开发
听风吟丶4 小时前
Java 9 + 模块化系统实战:从 Jar 地狱到模块解耦的架构升级
开发语言·python·pycharm