bash
# encoding: utf-8
# File_name:
import requests
from bs4 import BeautifulSoup
import xlrd #导入xlrd库
import pandas as pd
import openpyxl
# 定义函数来获取南京最新的二手房房子成交价
def get_nanjing_latest_second_hand_prices():
cookies = {
'select_city': '320100',
'lianjia_ssid': '',
'02eaefcc-d3ac-468d-a2d5-b1b816bc830f': '',
'Qs_lvt_200116': '',
'sajssdk_2015_cross_new_user': '',
'sensorsdata2015jssdkcross': '',
'Qs_pv_200116': '',
# ... 其他cookie
}
# 设置请求头,模拟浏览器访问
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Cookie': '; '.join(f'{name}={value}' for name, value in cookies.items()),
}
price_0_list = list()
price_100_list = list()
price_200_list = list()
price_300_list = list()
price_400_list = list()
# 假设这是提供南京最新二手房成交价的网页URL
for i in range(1,4):
print(f'运行次数:{i}')
url = f'https://nj.ke.com/chengjiao/pukouqita11/pg{i}ie2y4ba80ea130l2l3p3p4p5p6/'
print('url:'+url)
# 发送HTTP请求
response = requests.get(url, headers=headers)
# 检查请求是否成功
if response.status_code == 200:
# 使用BeautifulSoup解析HTML内容
soup = BeautifulSoup(response.text, 'html.parser')
# 根据实际的网页结构,找到包含二手房成交价的容器
# 假设成交价的容器是一个带有特定class的元素
price_container = soup.find('ul', class_='listContent')
li_tags = price_container.find_all('li')
print(''+str(i)+'该页多少房源:'+str(len(li_tags)))
# 遍历li标签并输出内容
for li in li_tags:
# 二手房交易初始化
house_dict = dict()
houseInfo = li.findAll('div', class_='info')
for infoDetail in houseInfo:
# 小区名称+户型+面积
title = infoDetail.find('div', class_='title')
a_tag = title.find('a', class_='CLICKDATA maidian-detail')
# 提取并输出<a>标签内的文本
if a_tag:
text_value = a_tag.string
tlist=text_value.split(" ")
house_dict['小区名称名称'] = tlist[0]
house_dict['户型'] = tlist[1]
house_dict['面积'] = tlist[2]
print('小区名称:'+tlist[0])
print('户型:'+tlist[1])
print('面积:'+tlist[2])
# address
# address = infoDetail.findAll('div', class_='address')
# for addressDetail in address:
# pass
# 朝向,装修风格
fangxiang = infoDetail.find('div', class_='houseInfo')
house_dict['朝向,装修风格'] = fangxiang.text.strip()
print(fangxiang.text.strip())
deal_date = infoDetail.find('div', class_='dealDate')
house_dict['成交时间'] = deal_date.text.strip()
print(deal_date.text.strip())
total_price = infoDetail.find('div', class_='totalPrice')
if '暂无价格' not in total_price.text:
total_number = infoDetail.find('span', class_='number').text
print(f'{total_number}万')
house_dict['成交价格'] = total_number
else:
total_number = '0'
house_dict['成交价格'] = total_number
print(total_number)
# 楼层
louceng = infoDetail.find('div', class_='positionInfo').text.strip()
house_dict['楼层'] = louceng
print(louceng)
# 单价
unit_price = infoDetail.find('div', class_='unitPrice').text.strip()
if '暂无单价' not in unit_price:
unit_price = infoDetail.findAll('span', class_='number')[1].text.strip()
else:
unit_price = '0'
house_dict['单价'] = unit_price
print(unit_price)
# 房屋满几年
deal_house_year = infoDetail.find('span', class_='dealHouseTxt')
if deal_house_year is None:
deal_house_year = ''
else:
deal_house_year = deal_house_year.text.strip()
house_dict['房屋满几年'] = deal_house_year
print(deal_house_year)
# 挂牌时长
deal_cycle_txts = infoDetail.find('span', class_='dealCycleTxt')
cycle_txts_find_all = deal_cycle_txts.findAll('span')
if(len(cycle_txts_find_all)==2):
house_dict['挂牌价'] = cycle_txts_find_all[0].text.strip()
print(cycle_txts_find_all[0].text.strip())
house_dict['成交周期'] = cycle_txts_find_all[1].text.strip()
print(cycle_txts_find_all[1].text.strip())
else:
house_dict['挂牌价'] = ''
for cycle_txts_find_all_span in cycle_txts_find_all:
house_dict['成交周期'] = cycle_txts_find_all_span.text.strip()
print(cycle_txts_find_all_span.text.strip())
try:
unit_price_int = float(house_dict['成交价格'])
if (unit_price_int == 0):
price_0_list.append(house_dict)
if (0<unit_price_int <=100 ):
price_100_list.append(house_dict)
if (100<unit_price_int <=200 ):
price_200_list.append(house_dict)
if (200<unit_price_int <=300 ):
price_300_list.append(house_dict)
if (300<unit_price_int <=400 ):
price_400_list.append(house_dict)
except ValueError:
print("转换错误:字符串无法转换为整数")
file = 'D:/house/pukou_pukouqita11.xlsx' # 文件路径
# 将列表字典转换为DataFrame
df = pd.DataFrame(price_0_list)
# 将数据写入不同的工作表中
# 将每个DataFrame写入到对应名字的工作表
with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
# 将DataFrame写入新的工作表
df.to_excel(writer, sheet_name='无报价')
# 将列表字典转换为DataFrame
df = pd.DataFrame(price_100_list)
# 将数据写入不同的工作表中
# 将每个DataFrame写入到对应名字的工作表
with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
# 将DataFrame写入新的工作表
df.to_excel(writer, sheet_name='100w以内')
# 将列表字典转换为DataFrame
df = pd.DataFrame(price_200_list)
# 将数据写入不同的工作表中
# 将每个DataFrame写入到对应名字的工作表
with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
# 将DataFrame写入新的工作表
df.to_excel(writer, sheet_name='200w以内')
# 将列表字典转换为DataFrame
df = pd.DataFrame(price_300_list)
# 将数据写入不同的工作表中
# 将每个DataFrame写入到对应名字的工作表
with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
# 将DataFrame写入新的工作表
df.to_excel(writer, sheet_name='300w以内')
# 将列表字典转换为DataFrame
df = pd.DataFrame(price_400_list)
# 将数据写入不同的工作表中
# 将每个DataFrame写入到对应名字的工作表
# 使用ExcelWriter追加模式打开文件
with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
# 将DataFrame写入新的工作表
df.to_excel(writer, sheet_name='400w以内')
# 调用函数并打印结果
latest_price = get_nanjing_latest_second_hand_prices()
初版:仍有很多需要优化的点,但是可以使用了,要注意,贝壳成交价的房源只展示100页,每页只有20个数据,所以大家在爬数据的数据要进行分区筛选,它里面的url 有很多规律(简直是无脑),如果没有发现可以通过私信或者直接评论。
效果图如下