pytho爬取南京房源成交价信息并导入到excel


bash 复制代码
# encoding: utf-8
# File_name: 
import requests
from bs4 import BeautifulSoup
import xlrd #导入xlrd库
import pandas as pd
import openpyxl

# 定义函数来获取南京最新的二手房房子成交价
def get_nanjing_latest_second_hand_prices():
    cookies = {
        'select_city': '320100',
        'lianjia_ssid': '',
        '02eaefcc-d3ac-468d-a2d5-b1b816bc830f': '',
        'Qs_lvt_200116': '',
        'sajssdk_2015_cross_new_user': '',
        'sensorsdata2015jssdkcross': '',
        'Qs_pv_200116': '',
        # ... 其他cookie
    }

    # 设置请求头,模拟浏览器访问
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
        'Cookie': '; '.join(f'{name}={value}' for name, value in cookies.items()),
    }
    price_0_list = list()
    price_100_list = list()
    price_200_list = list()
    price_300_list = list()
    price_400_list = list()

    # 假设这是提供南京最新二手房成交价的网页URL
    for i in range(1,4):
        print(f'运行次数:{i}')
        url = f'https://nj.ke.com/chengjiao/pukouqita11/pg{i}ie2y4ba80ea130l2l3p3p4p5p6/'
        print('url:'+url)
        # 发送HTTP请求
        response = requests.get(url, headers=headers)

        # 检查请求是否成功
        if response.status_code == 200:
            # 使用BeautifulSoup解析HTML内容
            soup = BeautifulSoup(response.text, 'html.parser')

            # 根据实际的网页结构,找到包含二手房成交价的容器
            # 假设成交价的容器是一个带有特定class的元素
            price_container = soup.find('ul', class_='listContent')
            li_tags = price_container.find_all('li')
            print(''+str(i)+'该页多少房源:'+str(len(li_tags)))
            # 遍历li标签并输出内容
            for li in li_tags:
                # 二手房交易初始化
                house_dict = dict()
                houseInfo = li.findAll('div', class_='info')
                for infoDetail in houseInfo:
                    # 小区名称+户型+面积
                    title = infoDetail.find('div', class_='title')
                    a_tag = title.find('a', class_='CLICKDATA maidian-detail')
                    # 提取并输出<a>标签内的文本
                    if a_tag:
                        text_value = a_tag.string
                        tlist=text_value.split(" ")
                        house_dict['小区名称名称'] = tlist[0]
                        house_dict['户型'] = tlist[1]
                        house_dict['面积'] = tlist[2]
                        print('小区名称:'+tlist[0])
                        print('户型:'+tlist[1])
                        print('面积:'+tlist[2])
                    # address
                    # address = infoDetail.findAll('div', class_='address')
                    # for addressDetail in address:
                    #     pass
                    # 朝向,装修风格
                    fangxiang = infoDetail.find('div', class_='houseInfo')
                    house_dict['朝向,装修风格'] = fangxiang.text.strip()
                    print(fangxiang.text.strip())
                    deal_date = infoDetail.find('div', class_='dealDate')
                    house_dict['成交时间'] = deal_date.text.strip()
                    print(deal_date.text.strip())
                    total_price = infoDetail.find('div', class_='totalPrice')
                    if '暂无价格' not in total_price.text:
                        total_number = infoDetail.find('span', class_='number').text
                        print(f'{total_number}万')
                        house_dict['成交价格'] = total_number
                    else:
                        total_number = '0'
                        house_dict['成交价格'] = total_number
                        print(total_number)

                    # 楼层
                    louceng = infoDetail.find('div', class_='positionInfo').text.strip()
                    house_dict['楼层'] = louceng
                    print(louceng)
                    # 单价
                    unit_price = infoDetail.find('div', class_='unitPrice').text.strip()
                    if '暂无单价' not in unit_price:
                        unit_price = infoDetail.findAll('span', class_='number')[1].text.strip()
                    else:
                        unit_price = '0'
                    house_dict['单价'] = unit_price
                    print(unit_price)
                    # 房屋满几年
                    deal_house_year = infoDetail.find('span', class_='dealHouseTxt')
                    if deal_house_year is None:
                        deal_house_year = ''
                    else:
                        deal_house_year = deal_house_year.text.strip()
                    house_dict['房屋满几年'] = deal_house_year
                    print(deal_house_year)
                    # 挂牌时长
                    deal_cycle_txts = infoDetail.find('span', class_='dealCycleTxt')
                    cycle_txts_find_all = deal_cycle_txts.findAll('span')
                    if(len(cycle_txts_find_all)==2):
                        house_dict['挂牌价'] = cycle_txts_find_all[0].text.strip()
                        print(cycle_txts_find_all[0].text.strip())
                        house_dict['成交周期'] = cycle_txts_find_all[1].text.strip()
                        print(cycle_txts_find_all[1].text.strip())

                    else:
                        house_dict['挂牌价'] = ''
                        for cycle_txts_find_all_span in cycle_txts_find_all:
                            house_dict['成交周期'] = cycle_txts_find_all_span.text.strip()
                            print(cycle_txts_find_all_span.text.strip())

                    try:
                        unit_price_int = float(house_dict['成交价格'])
                        if (unit_price_int == 0):
                            price_0_list.append(house_dict)
                        if (0<unit_price_int <=100 ):
                            price_100_list.append(house_dict)
                        if (100<unit_price_int <=200 ):
                            price_200_list.append(house_dict)
                        if (200<unit_price_int <=300 ):
                            price_300_list.append(house_dict)
                        if (300<unit_price_int <=400 ):
                            price_400_list.append(house_dict)
                    except ValueError:
                        print("转换错误:字符串无法转换为整数")


    file = 'D:/house/pukou_pukouqita11.xlsx'  # 文件路径
    # 将列表字典转换为DataFrame
    df = pd.DataFrame(price_0_list)
    # 将数据写入不同的工作表中
    # 将每个DataFrame写入到对应名字的工作表
    with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
        # 将DataFrame写入新的工作表
        df.to_excel(writer, sheet_name='无报价')

    # 将列表字典转换为DataFrame
    df = pd.DataFrame(price_100_list)
    # 将数据写入不同的工作表中
    # 将每个DataFrame写入到对应名字的工作表
    with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
        # 将DataFrame写入新的工作表
        df.to_excel(writer, sheet_name='100w以内')

    # 将列表字典转换为DataFrame
    df = pd.DataFrame(price_200_list)
    # 将数据写入不同的工作表中
    # 将每个DataFrame写入到对应名字的工作表
    with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
        # 将DataFrame写入新的工作表
        df.to_excel(writer, sheet_name='200w以内')

    # 将列表字典转换为DataFrame
    df = pd.DataFrame(price_300_list)
    # 将数据写入不同的工作表中
    # 将每个DataFrame写入到对应名字的工作表
    with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
        # 将DataFrame写入新的工作表
        df.to_excel(writer, sheet_name='300w以内')

    # 将列表字典转换为DataFrame
    df = pd.DataFrame(price_400_list)
    # 将数据写入不同的工作表中
    # 将每个DataFrame写入到对应名字的工作表
    # 使用ExcelWriter追加模式打开文件
    with pd.ExcelWriter(file, mode='a', engine='openpyxl') as writer:
        # 将DataFrame写入新的工作表
        df.to_excel(writer, sheet_name='400w以内')

# 调用函数并打印结果
latest_price = get_nanjing_latest_second_hand_prices()

初版:仍有很多需要优化的点,但是可以使用了,要注意,贝壳成交价的房源只展示100页,每页只有20个数据,所以大家在爬数据的数据要进行分区筛选,它里面的url 有很多规律(简直是无脑),如果没有发现可以通过私信或者直接评论。

效果图如下

相关推荐
湫ccc4 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe5 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin5 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
哭泣的眼泪4085 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
湫ccc6 小时前
《Python基础》之基本数据类型
开发语言·python
drebander7 小时前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
威威猫的栗子7 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
墨染风华不染尘8 小时前
python之开发笔记
开发语言·笔记·python
Dxy12393102168 小时前
python bmp图片转jpg
python
麦麦大数据8 小时前
Python棉花病虫害图谱系统CNN识别+AI问答知识neo4j vue+flask深度学习神经网络可视化
人工智能·python·深度学习