机器学习——决策树基础

第1关:创建数据集

python 复制代码
def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    return dataSet, labels
####请在此处输入代码####
myDat, t = createDataSet()
#######################
print(myDat)

第2关:计算数据集的信息熵

python 复制代码
from math import log
import operator
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)                   #声明数据集中样本总数
    labelCounts = {}                             #创建字典
    for featVec in dataSet:                      #所有可能分类的数量和发生频率
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt

第3关:数据集的划分

python 复制代码
def splitDataSet(dataSet, axis, value):
    retDataSet = []                                   #创建列表对象引用数据集,防止由于多次调用而改变元数据集。
    ####请在此处输入代码####
    for i in dataSet:
        if i[axis] == value:
            t = i[:axis]
            t.extend(i[axis + 1:])
            retDataSet.append(t)
    #######################
    return retDataSet

第4关:计算信息增益

python 复制代码
from ex03_lib import calcShannonEnt,splitDataSet

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1          #最后一个元素是当前实例的类别标签。
    baseEntropy = calcShannonEnt(dataSet)    #计算原始信息熵。
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):            #遍历数据集中所有特征。
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)           #创建唯一的分类标签列表。
        newEntropy = 0.0
        ####请在此处输入代码####
        for value in uniqueVals:             #遍历当前特征中所有唯一的特征值。
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)  #计算每种划分方式的信息熵。   
        infoGain = baseEntropy - newEntropy        #计算信息增益。
        #######################
        if (infoGain > bestInfoGain):            #将结果与目前所得到的最优划分进行比较。
            bestInfoGain = infoGain                   #如果结果优于当前最优化分特征,则更新划分特征。
            bestFeature = i
    return bestFeature                                 #返回最优划分的索引值。
相关推荐
工藤学编程42 分钟前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
Niuguangshuo7 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算