【机器学习】机器学习学习笔记 - 数据预处理 - 01

machine learning

  • 监督学习: 是指在有标记的样本(labeled samples)上建立机器学习的模型
  • 无监督学习: 是指在没有标记的样本上建立机器学习的模型
  • semi-supervised learning: 是指在部分标记样本上建立机器学习的模型
  • 强化学习: 是指在与环境交互的过程中,根据环境反馈来调整策略,以达到目标
  • 强化学习算法: 是指在与环境交互的过程中,根据环境反馈来调整策略,以达到目标的算法

pdf在线免费转word文档 https://orcc.online

数据预处理

  • 行: 样本; 列:特征

均值移除(标准化)

  • 均值移除(标准化): 平均值调整为 0, 标准差调整为 1
  • 由于一个样本的不同特征值差异较大,不利于使用现有机器学习算法进行样本处理
代码
python 复制代码
# -*- coding: UTF-8 -*-

import numpy as np
from sklearn import preprocessing

# 导入数据
data = np.array([[3,-1.5,2,-5.4],[0,4,-0.3,2.1],[1,3.3,-1.9,-4.3]])
print("data:\n", data)

# 数据预处理
data_standardized = preprocessing.scale(data)
print("preprocessing.scale:\n", data_standardized)
# 特征值的平均值, 几乎为0
print("Mean =", data_standardized.mean(axis=0))
# 标准差,都为1
print("Std deviation =", data_standardized.std(axis=0))
算法
均值为 0
python 复制代码
a=17
b=20
c=23
# 计算均值
mean=(a+b+c)/3
# 例如有一列特征值表示年龄:[17,20,23]
mean=(17+20+23)/3=20
a1=17-20=-3
b1=20-20=0
c1=23-20=3
# 均值为0
方差为 1
python 复制代码
a1=-3
b1=0
c1=3
s=std(a1,b1,c1)
result = [a1/s,b1/s,c1/s]

范围缩放

  • 数据点中每个特征的数值范围可能变化很大,因此,有时将特征的数值范围缩放到合理的大小是非常重要的
  • 特征缩放: 特征值缩放到 0~1 之间
代码
python 复制代码
data_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))
data_scaled = data_scaler.fit_transform(data)
print("Min max scaled data =", data_scaled)

归一化

  • 归一化: 特征值缩放到 0~1 之间
  • 数据归一化用于需要对特征向量的值进行调整时,以保证每个特征向量的值都缩放到相同的数值范围。机器学习中最常用的归一化形式就是将特征向量调整为 L1 范数,使特征向量的数值之和为 1
  • 这个方法经常用于确保数据点没有因为特征的基本性质而产生较大差异,即确保数据处于同一数量级,提高不同特征数据的可比性
代码
python 复制代码
data_scaler = preprocessing.normalizer(norm='l1').fit(data)
data_normalized = data_scaler.transform(data)
print("Normalized data =", data_normalized)

二值化

  • 二值化用于将数值特征向量转换为布尔类型向量
代码
python 复制代码
data_binarized = preprocessing.Binarizer(threshold=1.4).transform(data)
print("Binarized data:\n", data_binarized)

独热编码

  • 独热编码是一种将离散型特征转换为二值型特征的技术,它将每个离散型特征的值转换为一个二值特征,并将其值设为 1,其他值设为 0
代码
python 复制代码
encoder = preprocessing.OneHotEncoder()
encoder.fit([[0, 2, 1, 12], [1, 3, 5, 3], [2, 3, 2, 12], [1, 2, 4, 3]])
encoded_vector = encoder.transform([[2, 3, 5, 3]]).toarray()
print("Encoded vector =", encoded_vector)

标记编码

  • 标记编码: 给定一个类别,将其转换为一个整数
  • 标记编码的优点: 编码后的数据更加易于理解和处理
  • 标记编码的缺点: 编码后的数据不易于理解和处理
python 复制代码
from sklearn import preprocessing

# 标记编码器
print("#"*10,"标记编码器", "#"*10)
label_encoder = preprocessing.LabelEncoder()
# 创建标记
input_classes = ['audi', 'ford', 'audi', 'toyota', 'ford', 'bmw']
# 标记编码
label_encoder.fit(input_classes)

for i, item in enumerate(label_encoder.classes_):
    print(item, "\t=>\t", i)

print("#"*10,"标记转数字", "#"*10)
labels = ['toyota', 'ford', 'audi']
encoded_labels = label_encoder.transform(labels)
print("Labels =", labels)
print("Encoded labels =", list(encoded_labels))

划分训练集与测试集

python 复制代码
# 方法一,直接用包划分
from sklearn.model_selection import train_test_split

# 划分训练集与测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)

# 方法二,手工划分
# 划分训练集与测试集
X_train, X_test, y_train, y_test = X[0:100], X[100:], y[0:100], y[100:]

# 取80%的样本作为训练数据
num_training = int(0.8 * len(X))
num_test = len(X) - num_training

# 训练数据 80% reshape:(行数,列数)
# 行数:样本数
# 列数:特征数
X_train = np.array(X[:num_training]).reshape((num_training,1))
y_train = np.array(y[:num_training])

# 测试数据 20%
X_test = np.array(X[num_training:]).reshape((num_test,1))
y_test = np.array(y[num_training:])

IT免费在线工具网 https://orcc.online

相关推荐
山北雨夜漫步几秒前
机器学习 Day17 朴素贝叶斯算法-----概率论知识
人工智能·算法·机器学习
終不似少年遊*1 小时前
MindSpore框架学习项目-ResNet药物分类-数据增强
人工智能·深度学习·分类·数据挖掘·华为云·resnet·modelart
kovlistudio2 小时前
机器学习第十一讲:标准化 → 把厘米和公斤单位统一成标准值
人工智能·机器学习
戌崂石2 小时前
最优化方法Python计算:有约束优化应用——线性可分问题支持向量机
python·机器学习·支持向量机·最优化方法
Mr.Winter`5 小时前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
强盛小灵通专卖员5 小时前
分类分割详细指标说明
人工智能·深度学习·算法·机器学习
蜡笔小新..11 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
奋斗者1号12 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
kovlistudio15 小时前
机器学习第三讲:监督学习 → 带答案的学习册,如预测房价时需要历史价格数据
人工智能·机器学习
正在走向自律15 小时前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析