Ridge,Lasso,Elasticnet回归

本文主要关于多元线性回归(MSE)与L1,L2范数结合在一起从而提高鲁棒性,即正则化应用于MSE产生的Ridge,Lasso,Elasticnet回归的内容。

一,Ridge回归

岭回归实质上就是普通的MSE加上一项L2惩罚项来提高模型的鲁棒性,但同时也会降低一定的准确率。

python 复制代码
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor

X = 2*np.random.rand(100,1)
y = 4 + 3*X + np.random.randn(100,1)

rm = Ridge(alpha=0.4,solver='sag')#alpha调大,提高泛化能力,准度降低,alpha调小,泛化能力减弱,准度提高
rm.fit(X,y)
print("Ridge:")
print("predict:",rm.predict([[1.5]]))
print("w1:",rm.coef_)
print("bias:",rm.intercept_)
print("----------------"*10)
print("SGD:")
sr = SGDRegressor(penalty='l2',max_iter=1000)
sr.fit(X,y.reshape(-1,))
print("predict:",sr.predict([[1.5]]))
print("w1:",sr.coef_)
print("bias:",sr.intercept_)

上图为α值为0.4时产生的结果,当提高α值(即提高正则化力度),我们会发现准确度下降(如下图)。

二,Lasso回归

Lasso回归的损失函数包含MSE和L1范数两部分,符合正则化特点地,提高正则化力度的同时,准确值下降。

python 复制代码
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.linear_model import SGDRegressor
X = 2*np.random.rand(100,1)
y = 4 + 3*X + np.random.randn(100,1)

lm = Lasso(alpha=0.15,max_iter=30000)
lm.fit(X,y)
print("Lasso:")
print("w1:",lm.coef_)
print("bias:",lm.intercept_)
print("predict:",lm.predict([[1.5]]))
print("----------------"*10)
print("SGD:")
sr = SGDRegressor(penalty='l1',max_iter=10000)
sr.fit(X,y.reshape(-1,))
print("w1:",sr.coef_)
print("bias:",sr.intercept_)
print("predict:",sr.predict([[1.5]]))

当α为0.15时产生的结果,当提高α值,观察下图,我们发现L1范数对α更加敏感,当α大于1.2后w1归零,这里我们使用α=0.7观察现象。

三,Elasticnet回归

观察其损失函数,不难发现Elasticnet回归实质上就是由MSE,L1,L2三部分组成,p决定我们更注重哪种范数来正则化。

python 复制代码
import numpy as np
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import SGDRegressor
X = 2*np.random.rand(100,1)
y = 4 + 3*X + np.random.randn(100,1)

er = ElasticNet(alpha=0.04,l1_ratio=0.1,)
er.fit(X,y)
print("ElasticNet:")
print("bias:",er.intercept_)
print("w1:",er.coef_)
print("predict:",er.predict([[1.5]]))
print("----------------"*10)
print("SGD:")
sr = SGDRegressor(penalty="elasticnet",max_iter=1000)
sr.fit(X,y.reshape(-1,))
print("bias:",sr.intercept_)
print("w1:",sr.coef_)
print("predict:",sr.predict([[1.5]]))

我们可以通过调整α来调整整体正则化力度,调整l1_ratio来调整正则化侧重,这样可以更好的规范损失函数。

相关推荐
小于小于大橙子3 小时前
视觉SLAM数学基础
人工智能·数码相机·自动化·自动驾驶·几何学
封步宇AIGC5 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC5 小时前
量化交易系统开发-实时行情自动化交易-2.技术栈
人工智能·python·机器学习·数据挖掘
陌上阳光5 小时前
动手学深度学习68 Transformer
人工智能·深度学习·transformer
OpenI启智社区5 小时前
共筑开源技术新篇章 | 2024 CCF中国开源大会盛大开幕
人工智能·开源·ccf中国开源大会·大湾区
AI服务老曹5 小时前
建立更及时、更有效的安全生产优化提升策略的智慧油站开源了
大数据·人工智能·物联网·开源·音视频
YRr YRr5 小时前
PyTorch:torchvision中的dataset的使用
人工智能
love_and_hope6 小时前
Pytorch学习--神经网络--完整的模型训练套路
人工智能·pytorch·python·深度学习·神经网络·学习
思通数据6 小时前
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
大数据·人工智能·目标检测·计算机视觉·自然语言处理·数据挖掘·ocr
兔老大的胡萝卜6 小时前
关于 3D Engine Design for Virtual Globes(三维数字地球引擎设计)
人工智能·3d