Elasticsearch内存占用分析

目录

[1. 堆内存 (Heap Memory)](#1. 堆内存 (Heap Memory))

[2. 索引缓存 (Index Cache)](#2. 索引缓存 (Index Cache))

[3. 段缓存 (Segment Cache)](#3. 段缓存 (Segment Cache))

[4. 文件系统缓存 (File System Cache)](#4. 文件系统缓存 (File System Cache))

[5. 分片和副本 (Shards and Replicas)](#5. 分片和副本 (Shards and Replicas))

[6. 分析器和令牌器 (Analyzers and Tokenizers)](#6. 分析器和令牌器 (Analyzers and Tokenizers))

[7. 过度配置 (Over-Allocation)](#7. 过度配置 (Over-Allocation))

[8. 垃圾回收 (Garbage Collection)](#8. 垃圾回收 (Garbage Collection))


1. 堆内存 (Heap Memory)

Elasticsearch的核心组件是基于Java的,因此它依赖于Java虚拟机(JVM)的堆内存来存储对象实例和运行时数据。堆内存中存放的主要是文档对象、读操作的缓冲区以及ES内部处理的各种数据结构。

2. 索引缓存 (Index Cache)

包括字段数据缓存(Field Data Cache)和查询缓存(Query Cache)。字段数据缓存用于聚合操作,存储文档的字段值;查询缓存则用于缓存可复用的查询结果,减少重复计算。

3. 段缓存 (Segment Cache)

Lucene索引由多个段(Segments)组成,每个段是一个倒排索引。段缓存用于存储这些段的元数据和统计信息,以加快搜索操作。

4. 文件系统缓存 (File System Cache)

操作系统级别的缓存,用于缓存磁盘I/O操作中的数据。ES大量依赖文件系统缓存来提高磁盘读取性能。

5. 分片和副本 (Shards and Replicas)

每个分片是一个独立的索引,每个副本又是原始分片的完整拷贝。分片和副本的数量会影响内存的使用。更多的分片和副本意味着更多的索引数据要被加载到内存中。

6. 分析器和令牌器 (Analyzers and Tokenizers)

文本分析过程中,分析器和令牌器用于处理文本数据,生成令牌(Tokens)并构建倒排索引。这一过程需要消耗内存资源。

7. 过度配置 (Over-Allocation)

不恰当的配置,如过多的分片或过大的堆内存设置,会导致不必要的内存占用。

8. 垃圾回收 (Garbage Collection)

JVM的垃圾回收机制会影响内存的使用和回收。长时间运行的垃圾回收或者频繁的垃圾回收都可能影响ES的内存使用。

总结

Elasticsearch的内存占用是由其分布式架构和基于JVM的特性所决定的。为了维持快速的搜索和索引性能,它需要在内存中维护各种缓存和数据结构。合理的配置和资源管理是确保ES高效运行的关键。

相关推荐
B站_计算机毕业设计之家2 小时前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
失散133 小时前
分布式专题——43 ElasticSearch概述
java·分布式·elasticsearch·架构
Apache Flink4 小时前
Flink Agents 0.1.0 发布公告
大数据·flink
潘达斯奈基~6 小时前
在使用spark的applyInPandas方法过程中,遇到类型冲突问题如何解决
大数据·笔记
火星资讯7 小时前
腾多多数字零售模式:从成本转嫁到全生态共赢的破局实践
大数据
望获linux7 小时前
【实时Linux实战系列】实时 Linux 的自动化基准测试框架
java·大数据·linux·运维·网络·elasticsearch·搜索引擎
金宗汉8 小时前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
直有两条腿8 小时前
【数据迁移】HBase Bulkload批量加载原理
大数据·数据库·hbase
Joy T8 小时前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
风清再凯9 小时前
01-ELK安装ES,ES-head
大数据·elk·elasticsearch