手写数字识别:基于决策树算法,KNN算法,支持向量机(SVM)算法与卷积神经网络(CNN)算法

对于手写数字识别任务,我们可以使用不同的机器学习算法来实现,包括决策树、K最近邻(KNN)、支持向量机(SVM)和卷积神经网络(CNN)。下面我将为你提供每种算法的基本代码示例。

  1. 决策树算法:
python 复制代码
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)

# 创建决策树模型
dt_model = DecisionTreeClassifier()

# 训练模型
dt_model.fit(X_train, y_train)

# 预测
y_pred = dt_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("决策树算法准确率:", accuracy)
  1. K最近邻算法(KNN):
python 复制代码
from sklearn.neighbors import KNeighborsClassifier

# 创建KNN模型
knn_model = KNeighborsClassifier()

# 训练模型
knn_model.fit(X_train, y_train)

# 预测
y_pred = knn_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("KNN算法准确率:", accuracy)
  1. 支持向量机(SVM)算法:
python 复制代码
from sklearn.svm import SVC

# 创建SVM模型
svm_model = SVC()

# 训练模型
svm_model.fit(X_train, y_train)

# 预测
y_pred = svm_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("SVM算法准确率:", accuracy)
  1. 卷积神经网络(CNN)算法:这里给出一个简单的Keras示例,用于构建一个简单的卷积神经网络模型。
python 复制代码
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.utils import to_categorical

# 加载数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# 创建CNN模型
cnn_model = Sequential()
cnn_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
cnn_model.add(Flatten())
cnn_model.add(Dense(10, activation='softmax'))

# 编译模型
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
cnn_model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))

# 评估模型
accuracy = cnn_model.evaluate(X_test, y_test)[1]
print("CNN算法准确率:", accuracy)

这些是每种算法的基本实现示例。对于CNN算法,我们使用了Keras来构建模型,因为Keras提供了更简单易用的API来构建神经网络。

相关推荐
Deepoch32 分钟前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
时空自由民.9 天前
C++ 不同线程之间传值
开发语言·c++·算法
ai小鬼头9 天前
AIStarter开发者熊哥分享|低成本部署AI项目的实战经验
后端·算法·架构
小白菜3336669 天前
DAY 37 早停策略和模型权重的保存
人工智能·深度学习·算法
zeroporn9 天前
以玄幻小说方式打开深度学习词嵌入算法!! 使用Skip-gram来完成 Word2Vec 词嵌入(Embedding)
人工智能·深度学习·算法·自然语言处理·embedding·word2vec·skip-gram
亮亮爱刷题9 天前
飞往大厂梦之算法提升-7
数据结构·算法·leetcode·动态规划
_周游9 天前
【数据结构】_二叉树OJ第二弹(返回数组的遍历专题)
数据结构·算法
双叶8369 天前
(C语言)Map数组的实现(数据结构)(链表)(指针)
c语言·数据结构·c++·算法·链表·哈希算法
安全系统学习9 天前
【网络安全】DNS 域原理、危害及防御
算法·安全·web安全·网络安全·哈希算法