手写数字识别:基于决策树算法,KNN算法,支持向量机(SVM)算法与卷积神经网络(CNN)算法

对于手写数字识别任务,我们可以使用不同的机器学习算法来实现,包括决策树、K最近邻(KNN)、支持向量机(SVM)和卷积神经网络(CNN)。下面我将为你提供每种算法的基本代码示例。

  1. 决策树算法:
python 复制代码
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)

# 创建决策树模型
dt_model = DecisionTreeClassifier()

# 训练模型
dt_model.fit(X_train, y_train)

# 预测
y_pred = dt_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("决策树算法准确率:", accuracy)
  1. K最近邻算法(KNN):
python 复制代码
from sklearn.neighbors import KNeighborsClassifier

# 创建KNN模型
knn_model = KNeighborsClassifier()

# 训练模型
knn_model.fit(X_train, y_train)

# 预测
y_pred = knn_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("KNN算法准确率:", accuracy)
  1. 支持向量机(SVM)算法:
python 复制代码
from sklearn.svm import SVC

# 创建SVM模型
svm_model = SVC()

# 训练模型
svm_model.fit(X_train, y_train)

# 预测
y_pred = svm_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("SVM算法准确率:", accuracy)
  1. 卷积神经网络(CNN)算法:这里给出一个简单的Keras示例,用于构建一个简单的卷积神经网络模型。
python 复制代码
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.utils import to_categorical

# 加载数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# 创建CNN模型
cnn_model = Sequential()
cnn_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
cnn_model.add(Flatten())
cnn_model.add(Dense(10, activation='softmax'))

# 编译模型
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
cnn_model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))

# 评估模型
accuracy = cnn_model.evaluate(X_test, y_test)[1]
print("CNN算法准确率:", accuracy)

这些是每种算法的基本实现示例。对于CNN算法,我们使用了Keras来构建模型,因为Keras提供了更简单易用的API来构建神经网络。

相关推荐
oioihoii8 分钟前
C++23 中 constexpr 的重要改动
c++·算法·c++23
前端 贾公子14 分钟前
详解 LeetCode 第 242 题 - 有效的字母组
算法·leetcode·职场和发展
sofaraway1319 分钟前
【多目标进化算法】 MOEA/D算法(知识点)
算法
pystraf41 分钟前
UOJ 228 基础数据结构练习题 Solution
数据结构·c++·算法·线段树
海底火旺1 小时前
破解二维矩阵搜索难题:从暴力到最优的算法之旅
javascript·算法·面试
黄昏ivi2 小时前
电力系统最小惯性常数解析
算法
独家回忆3642 小时前
每日算法-250425
算法
烁3472 小时前
每日一题(小白)模拟娱乐篇33
java·开发语言·算法
Demons_kirit3 小时前
LeetCode 2799、2840题解
算法·leetcode·职场和发展
软行3 小时前
LeetCode 每日一题 2845. 统计趣味子数组的数目
数据结构·c++·算法·leetcode