手写数字识别:基于决策树算法,KNN算法,支持向量机(SVM)算法与卷积神经网络(CNN)算法

对于手写数字识别任务,我们可以使用不同的机器学习算法来实现,包括决策树、K最近邻(KNN)、支持向量机(SVM)和卷积神经网络(CNN)。下面我将为你提供每种算法的基本代码示例。

  1. 决策树算法:
python 复制代码
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)

# 创建决策树模型
dt_model = DecisionTreeClassifier()

# 训练模型
dt_model.fit(X_train, y_train)

# 预测
y_pred = dt_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("决策树算法准确率:", accuracy)
  1. K最近邻算法(KNN):
python 复制代码
from sklearn.neighbors import KNeighborsClassifier

# 创建KNN模型
knn_model = KNeighborsClassifier()

# 训练模型
knn_model.fit(X_train, y_train)

# 预测
y_pred = knn_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("KNN算法准确率:", accuracy)
  1. 支持向量机(SVM)算法:
python 复制代码
from sklearn.svm import SVC

# 创建SVM模型
svm_model = SVC()

# 训练模型
svm_model.fit(X_train, y_train)

# 预测
y_pred = svm_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("SVM算法准确率:", accuracy)
  1. 卷积神经网络(CNN)算法:这里给出一个简单的Keras示例,用于构建一个简单的卷积神经网络模型。
python 复制代码
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.utils import to_categorical

# 加载数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# 创建CNN模型
cnn_model = Sequential()
cnn_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
cnn_model.add(Flatten())
cnn_model.add(Dense(10, activation='softmax'))

# 编译模型
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
cnn_model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))

# 评估模型
accuracy = cnn_model.evaluate(X_test, y_test)[1]
print("CNN算法准确率:", accuracy)

这些是每种算法的基本实现示例。对于CNN算法,我们使用了Keras来构建模型,因为Keras提供了更简单易用的API来构建神经网络。

相关推荐
我找到地球的支点啦25 分钟前
Matlab系列(006) 一利用matlab保存txt文件和读取txt文件
开发语言·算法·matlab
Dev7z38 分钟前
基于Matlab实现GRACE卫星重力数据的全球水储量变化估算与分析
人工智能·算法·matlab
爱喝热水的呀哈喽1 小时前
11题目汇总
算法
三斗米2 小时前
Transformer入门:一文读懂《Attention Is All You Need》
算法·架构
Swift社区2 小时前
LeetCode 458 - 可怜的小猪
算法·leetcode·职场和发展
AI科技星2 小时前
宇宙的像素:真空中一点如何编码无限星光
数据结构·人工智能·算法·机器学习·重构
程芯带你刷C语言简单算法题2 小时前
Day37~求组合数
c语言·开发语言·学习·算法·c
程序员-周李斌2 小时前
transmittable-thread-local[线程池跨线程值传递]
java·开发语言·算法·散列表
Flash.kkl2 小时前
优先算法专题十七——多源BFS
算法·宽度优先
Yzzz-F2 小时前
牛客小白月赛 D[差分] E [暴力枚举] F[] g[二阶差分]
算法