手写数字识别:基于决策树算法,KNN算法,支持向量机(SVM)算法与卷积神经网络(CNN)算法

对于手写数字识别任务,我们可以使用不同的机器学习算法来实现,包括决策树、K最近邻(KNN)、支持向量机(SVM)和卷积神经网络(CNN)。下面我将为你提供每种算法的基本代码示例。

  1. 决策树算法:
python 复制代码
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)

# 创建决策树模型
dt_model = DecisionTreeClassifier()

# 训练模型
dt_model.fit(X_train, y_train)

# 预测
y_pred = dt_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("决策树算法准确率:", accuracy)
  1. K最近邻算法(KNN):
python 复制代码
from sklearn.neighbors import KNeighborsClassifier

# 创建KNN模型
knn_model = KNeighborsClassifier()

# 训练模型
knn_model.fit(X_train, y_train)

# 预测
y_pred = knn_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("KNN算法准确率:", accuracy)
  1. 支持向量机(SVM)算法:
python 复制代码
from sklearn.svm import SVC

# 创建SVM模型
svm_model = SVC()

# 训练模型
svm_model.fit(X_train, y_train)

# 预测
y_pred = svm_model.predict(X_test)

# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("SVM算法准确率:", accuracy)
  1. 卷积神经网络(CNN)算法:这里给出一个简单的Keras示例,用于构建一个简单的卷积神经网络模型。
python 复制代码
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.utils import to_categorical

# 加载数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# 创建CNN模型
cnn_model = Sequential()
cnn_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
cnn_model.add(Flatten())
cnn_model.add(Dense(10, activation='softmax'))

# 编译模型
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
cnn_model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))

# 评估模型
accuracy = cnn_model.evaluate(X_test, y_test)[1]
print("CNN算法准确率:", accuracy)

这些是每种算法的基本实现示例。对于CNN算法,我们使用了Keras来构建模型,因为Keras提供了更简单易用的API来构建神经网络。

相关推荐
B站_计算机毕业设计之家14 小时前
预测算法:股票数据分析预测系统 股票预测 股价预测 Arima预测算法(时间序列预测算法) Flask 框架 大数据(源码)✅
python·算法·机器学习·数据分析·flask·股票·预测
想唱rap15 小时前
C++ list 类的使用
c语言·开发语言·数据结构·c++·笔记·算法·list
l1t15 小时前
利用DuckDB SQL求解集合数学题
数据库·sql·算法·集合·duckdb
yuyanjingtao15 小时前
CCF-GESP 等级考试 2024年9月认证C++四级真题解析
c++·算法·青少年编程·gesp·csp-j/s
微笑尅乐15 小时前
洗牌算法讲解——力扣384.打乱数组
算法·leetcode·职场和发展
Lei_33596715 小时前
[算法]背包DP(01背包、完全背包问题、多重背包、分组背包、混合背包问题、有依赖的背包问题等)
c++·算法
uesowys15 小时前
华为OD算法开发指导-比赛的冠亚季军
算法·华为od
天选之女wow15 小时前
【代码随想录算法训练营——Day48】单调栈——42.接雨水、84.柱状图中最大的矩形
算法·leetcode
不知名。。。。。。。。15 小时前
算法之动态规划
算法·动态规划
lingchen190615 小时前
MATLAB图形绘制基础(一)二维图形
开发语言·算法·matlab