特征提取(Feature Extraction)常见频域特征笔记(四)

频域特征是指将数据转换到频率域进行分析的特征。在频域分析中,我们可以看到信号在不同频率下的成分,这对于理解信号的周期性、周期性强度以及频率分布非常有用。常见的频域特征包括傅里叶变换、功率谱密度等。下面我会详细解释每个频域特征,并给出相应的Python代码。

  1. 傅里叶变换(Fourier Transform) :将信号从时域(时间域)转换到频域(频率域),它将信号分解成一系列正弦和余弦函数的组合。傅里叶变换可以帮助我们了解信号中各种频率成分的强度和相位信息。

    复制代码
    import numpy as np
    import matplotlib.pyplot as plt
    
    def fourier_transform(signal, sampling_rate):
        n = len(signal)
        frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
        fft_values = np.fft.fft(signal)
        return frequencies, fft_values
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, fft_values = fourier_transform(signal, sampling_rate)
    plt.plot(frequencies, np.abs(fft_values))
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Amplitude')
    plt.title('Fourier Transform')
    plt.show()
  2. 功率谱密度(Power Spectral Density) :表示信号在不同频率上的能量分布。功率谱密度可以帮助我们确定信号中哪些频率成分具有更高的能量。

    复制代码
    from scipy.signal import welch
    
    def power_spectral_density(signal, sampling_rate):
        frequencies, psd = welch(signal, fs=sampling_rate)
        return frequencies, psd
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, psd = power_spectral_density(signal, sampling_rate)
    plt.semilogy(frequencies, psd)
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Power Spectral Density')
    plt.title('Power Spectral Density')
    plt.show()

    这些是常见的频域特征及其相应的Python实现。在信号处理和频域分析中,这些特征对于理解信号的频率成分、周期性以及能量分布非常重要。

相关推荐
_Twink1e1 分钟前
【HCIA-AIV4.0】2025题库+解析(二)
人工智能·深度学习·机器学习
新知图书2 分钟前
FastGPT的特点与优势
人工智能·ai agent·智能体·大模型应用开发·大模型应用
serve the people17 分钟前
PQ+IVF组合解决海量向量内存占用高和检索慢的问题
人工智能·python
on_pluto_19 分钟前
【debug】解决 5070ti 与 pytorch 版本不兼容的问题
人工智能·pytorch·python
OpenCSG24 分钟前
悟界Emu3.5发布:世界模型诞生,多模态进入“下一状态预测”新纪元
人工智能·开源
铅笔侠_小龙虾25 分钟前
深度学习理论推导--多元线性回归
人工智能·深度学习·机器学习
腾视科技26 分钟前
私有云时代来临:AI NAS如何重塑你的数字生活?
人工智能·生活
TextIn智能文档云平台29 分钟前
PDF格式转化,哪款软件的准确率更高?
人工智能·pdf
星座52837 分钟前
智慧农林核心遥感技术暨:AI赋能农林遥感智能提取99案例实践-生化参数智能反演、表型信息智能提取、胁迫状态智能识别
人工智能·高光谱·智慧农林
糖葫芦君39 分钟前
普通卷积 VS 深度卷积
人工智能·深度学习