特征提取(Feature Extraction)常见频域特征笔记(四)

频域特征是指将数据转换到频率域进行分析的特征。在频域分析中,我们可以看到信号在不同频率下的成分,这对于理解信号的周期性、周期性强度以及频率分布非常有用。常见的频域特征包括傅里叶变换、功率谱密度等。下面我会详细解释每个频域特征,并给出相应的Python代码。

  1. 傅里叶变换(Fourier Transform) :将信号从时域(时间域)转换到频域(频率域),它将信号分解成一系列正弦和余弦函数的组合。傅里叶变换可以帮助我们了解信号中各种频率成分的强度和相位信息。

    复制代码
    import numpy as np
    import matplotlib.pyplot as plt
    
    def fourier_transform(signal, sampling_rate):
        n = len(signal)
        frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
        fft_values = np.fft.fft(signal)
        return frequencies, fft_values
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, fft_values = fourier_transform(signal, sampling_rate)
    plt.plot(frequencies, np.abs(fft_values))
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Amplitude')
    plt.title('Fourier Transform')
    plt.show()
  2. 功率谱密度(Power Spectral Density) :表示信号在不同频率上的能量分布。功率谱密度可以帮助我们确定信号中哪些频率成分具有更高的能量。

    复制代码
    from scipy.signal import welch
    
    def power_spectral_density(signal, sampling_rate):
        frequencies, psd = welch(signal, fs=sampling_rate)
        return frequencies, psd
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, psd = power_spectral_density(signal, sampling_rate)
    plt.semilogy(frequencies, psd)
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Power Spectral Density')
    plt.title('Power Spectral Density')
    plt.show()

    这些是常见的频域特征及其相应的Python实现。在信号处理和频域分析中,这些特征对于理解信号的频率成分、周期性以及能量分布非常重要。

相关推荐
耳东哇8 分钟前
spring ai-openai-vl模型应用qwen-vl\gpt-文字识别-java
java·人工智能·spring
说私域4 小时前
基于开源AI智能客服、AI智能名片与S2B2C商城小程序的微商服务优化及复购转介绍提升策略研究
人工智能·小程序
之歆6 小时前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
legendary_bruce8 小时前
【22-决策树】
算法·决策树·机器学习
paid槮9 小时前
机器学习总结
人工智能·深度学习·机器学习
Hello123网站9 小时前
职得AI简历-免费AI简历生成工具
人工智能·ai工具
亚里随笔9 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼9 小时前
机器学习之PCA降维
人工智能·机器学习
东方不败之鸭梨的测试笔记10 小时前
智能测试用例生成工具设计
人工智能·ai·langchain
失散1312 小时前
深度学习——02 PyTorch
人工智能·pytorch·深度学习