特征提取(Feature Extraction)常见频域特征笔记(四)

频域特征是指将数据转换到频率域进行分析的特征。在频域分析中,我们可以看到信号在不同频率下的成分,这对于理解信号的周期性、周期性强度以及频率分布非常有用。常见的频域特征包括傅里叶变换、功率谱密度等。下面我会详细解释每个频域特征,并给出相应的Python代码。

  1. 傅里叶变换(Fourier Transform) :将信号从时域(时间域)转换到频域(频率域),它将信号分解成一系列正弦和余弦函数的组合。傅里叶变换可以帮助我们了解信号中各种频率成分的强度和相位信息。

    复制代码
    import numpy as np
    import matplotlib.pyplot as plt
    
    def fourier_transform(signal, sampling_rate):
        n = len(signal)
        frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
        fft_values = np.fft.fft(signal)
        return frequencies, fft_values
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, fft_values = fourier_transform(signal, sampling_rate)
    plt.plot(frequencies, np.abs(fft_values))
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Amplitude')
    plt.title('Fourier Transform')
    plt.show()
  2. 功率谱密度(Power Spectral Density) :表示信号在不同频率上的能量分布。功率谱密度可以帮助我们确定信号中哪些频率成分具有更高的能量。

    复制代码
    from scipy.signal import welch
    
    def power_spectral_density(signal, sampling_rate):
        frequencies, psd = welch(signal, fs=sampling_rate)
        return frequencies, psd
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, psd = power_spectral_density(signal, sampling_rate)
    plt.semilogy(frequencies, psd)
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Power Spectral Density')
    plt.title('Power Spectral Density')
    plt.show()

    这些是常见的频域特征及其相应的Python实现。在信号处理和频域分析中,这些特征对于理解信号的频率成分、周期性以及能量分布非常重要。

相关推荐
Code哈哈笑12 分钟前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL14 分钟前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
loopdeloop16 分钟前
预测模型开发与评估:基于机器学习的数据分析实践
人工智能
Akamai中国22 分钟前
分布式AI推理的成功之道
人工智能·分布式·云原生·云计算·云服务·云平台·云主机
meisongqing31 分钟前
【软件工程】符号执行与约束求解缺陷检测方法
人工智能·算法·软件工程·软件缺陷
OJAC近屿智能1 小时前
ChatGPT再升级!
大数据·人工智能·百度·chatgpt·近屿智能
莫叫石榴姐1 小时前
如何为大模型编写优雅且高效的提示词?
人工智能·算法
愚公搬代码1 小时前
【愚公系列】《Manus极简入门》042-投资策略分析师:“投资智慧导航”
人工智能·agi·ai agent·智能体·manus
papapa键盘侠1 小时前
Coze 实战教程 | 10 分钟打造你的AI 助手
人工智能·微信·信息可视化
I"ll carry you2 小时前
【2025.5.12】视觉语言模型 (更好、更快、更强)
人工智能·语言模型·自然语言处理