特征提取(Feature Extraction)常见频域特征笔记(四)

频域特征是指将数据转换到频率域进行分析的特征。在频域分析中,我们可以看到信号在不同频率下的成分,这对于理解信号的周期性、周期性强度以及频率分布非常有用。常见的频域特征包括傅里叶变换、功率谱密度等。下面我会详细解释每个频域特征,并给出相应的Python代码。

  1. 傅里叶变换(Fourier Transform) :将信号从时域(时间域)转换到频域(频率域),它将信号分解成一系列正弦和余弦函数的组合。傅里叶变换可以帮助我们了解信号中各种频率成分的强度和相位信息。

    复制代码
    import numpy as np
    import matplotlib.pyplot as plt
    
    def fourier_transform(signal, sampling_rate):
        n = len(signal)
        frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
        fft_values = np.fft.fft(signal)
        return frequencies, fft_values
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, fft_values = fourier_transform(signal, sampling_rate)
    plt.plot(frequencies, np.abs(fft_values))
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Amplitude')
    plt.title('Fourier Transform')
    plt.show()
  2. 功率谱密度(Power Spectral Density) :表示信号在不同频率上的能量分布。功率谱密度可以帮助我们确定信号中哪些频率成分具有更高的能量。

    复制代码
    from scipy.signal import welch
    
    def power_spectral_density(signal, sampling_rate):
        frequencies, psd = welch(signal, fs=sampling_rate)
        return frequencies, psd
    
    # Example
    t = np.linspace(0, 1, 1000)  # Time array from 0 to 1 with 1000 points
    signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)  # Signal with two frequencies
    sampling_rate = 1000  # Sampling rate in Hz
    
    frequencies, psd = power_spectral_density(signal, sampling_rate)
    plt.semilogy(frequencies, psd)
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Power Spectral Density')
    plt.title('Power Spectral Density')
    plt.show()

    这些是常见的频域特征及其相应的Python实现。在信号处理和频域分析中,这些特征对于理解信号的频率成分、周期性以及能量分布非常重要。

相关推荐
格林威23 分钟前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖1 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站1 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI1 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技1 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U1 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙2 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人
THMAIL2 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%2 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_2 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习