基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)

效果视频链接:基于深度学习光伏预测系统(五个模型)_哔哩哔哩_bilibili

界面设计

注册界面

登录界面

主界面

展示界面

1.数据集来源

The SOLETE dataset

这里分别保存了不同间隔采样时间表格

1min是以1min 间隔采集的数据集

数据集截图(开始位置截图)

截止位置截图

2.关于特征与标签选择(在交通流量预测方面主要有以下两种方式,本文是第二种)

2.1.第一种方式如下图所示

每一行前9列(黄色部分) 作为特征输入,每一行的第10列值作为标签(红色部分)

2**.2.第二种方式如下图所示**

前6行的10列数据(黄色部分)作为特征输入,第7行的第10列数据(红色部分)为标签。

根据已获取的历史数据预测下一个时间点或者未来多个时间点 更符合实际。

3.模型(LSTM;GRU;CNN-LSTM;CNN-GRU;LSTM_transform模型)评价指标

MAE;MSE;MAPE

LSTM 26.3020%; 0.5736% ;49.3607%

GRU 19.3869% ;0.1793%; 44.0200%

CNN-LSTM 16.0719% ;0.1367%; 39.5737%

CNN-GRU 17.2165%; 0.1541% ;41.5540%

LSTM_transform 15.9017%; 0.1385%; 39.7443%

4.效果图(测试集)

LSTM

GRU

CNN-LSTM

CNN-GRU

LSTM+transform

  1. 对数据集和代码感兴趣的,可以关注最后一行

    import sys
    import numpy as np
    from PIL import Image
    from PyQt5.QtCore import Qt
    from PyQt5.QtGui import QPainter,QPen,QImage,QPixmap,QFont,QPalette,QBrush
    from PyQt5.QtWidgets import QWidget,QLabel,QPushButton,QLineEdit,QApplication,QMessageBox,QTableWidget,QTableWidgetItem
    import matplotlib.pyplot as plt
    import pandas as pd
    #数据集和代码:https://mbd.pub/o/bread/ZpWVm5xv

相关推荐
YJlio7 分钟前
ProcessExplorer_17.09_x64-Chs 新版本升级:我看到的区别与优势(含升级思路与注意点)
人工智能·笔记·学习
F_D_Z15 分钟前
哈希表解Two Sum问题
python·算法·leetcode·哈希表
智算菩萨19 分钟前
【实战】使用讯飞星火API和Python构建一套文本摘要UI程序
开发语言·python·ui
Aaron158820 分钟前
基于RFSOC+VU13P+GPU架构在雷达电子战的技术
人工智能·算法·fpga开发·架构·硬件工程·信号处理·基带工程
yiersansiwu123d20 分钟前
AI大模型的技术演进与产业赋能:迈向协同共生的智能新时代
人工智能
Groundwork Explorer24 分钟前
异步框架+POLL混合方案应对ESP32 MPY多任务+TCP多连接
python·单片机
weisian15126 分钟前
入门篇--人工智能发展史-4-点燃深度学习革命的那把火,AlexNet
人工智能·深度学习
梦帮科技33 分钟前
Scikit-learn特征工程实战:从数据清洗到提升模型20%准确率
人工智能·python·机器学习·数据挖掘·开源·极限编程
xqqxqxxq41 分钟前
Java 集合框架之线性表(List)实现技术笔记
java·笔记·python