基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)

效果视频链接:基于深度学习光伏预测系统(五个模型)_哔哩哔哩_bilibili

界面设计

注册界面

登录界面

主界面

展示界面

1.数据集来源

The SOLETE dataset

这里分别保存了不同间隔采样时间表格

1min是以1min 间隔采集的数据集

数据集截图(开始位置截图)

截止位置截图

2.关于特征与标签选择(在交通流量预测方面主要有以下两种方式,本文是第二种)

2.1.第一种方式如下图所示

每一行前9列(黄色部分) 作为特征输入,每一行的第10列值作为标签(红色部分)

2**.2.第二种方式如下图所示**

前6行的10列数据(黄色部分)作为特征输入,第7行的第10列数据(红色部分)为标签。

根据已获取的历史数据预测下一个时间点或者未来多个时间点 更符合实际。

3.模型(LSTM;GRU;CNN-LSTM;CNN-GRU;LSTM_transform模型)评价指标

MAE;MSE;MAPE

LSTM 26.3020%; 0.5736% ;49.3607%

GRU 19.3869% ;0.1793%; 44.0200%

CNN-LSTM 16.0719% ;0.1367%; 39.5737%

CNN-GRU 17.2165%; 0.1541% ;41.5540%

LSTM_transform 15.9017%; 0.1385%; 39.7443%

4.效果图(测试集)

LSTM

GRU

CNN-LSTM

CNN-GRU

LSTM+transform

  1. 对数据集和代码感兴趣的,可以关注最后一行

    import sys
    import numpy as np
    from PIL import Image
    from PyQt5.QtCore import Qt
    from PyQt5.QtGui import QPainter,QPen,QImage,QPixmap,QFont,QPalette,QBrush
    from PyQt5.QtWidgets import QWidget,QLabel,QPushButton,QLineEdit,QApplication,QMessageBox,QTableWidget,QTableWidgetItem
    import matplotlib.pyplot as plt
    import pandas as pd
    #数据集和代码:https://mbd.pub/o/bread/ZpWVm5xv

相关推荐
我不是小upper1 分钟前
SVM超详细原理总结
人工智能·机器学习·支持向量机
Yxh181377845547 分钟前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
Humbunklung33 分钟前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt
取酒鱼食--【余九】40 分钟前
rl_sar实现sim2real的整体思路
人工智能·笔记·算法·rl_sar
Jamence1 小时前
多模态大语言模型arxiv论文略读(111)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
火车叼位1 小时前
使用 uv 工具在 Windows 系统快速下载安装与切换 Python
python
归去_来兮1 小时前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn
爱吃饼干的熊猫1 小时前
PlayDiffusion上线:AI语音编辑进入“无痕时代”
人工智能·语音识别
SelectDB技术团队1 小时前
Apache Doris + MCP:Agent 时代的实时数据分析底座
人工智能·数据挖掘·数据分析·apache·mcp