机器学习笔记-01

一...AI(人工智能)

二.机器学习--是人工智能实现的途径

三.深度学习--是机器学习的一个方法

1.机器学习能做什么:
1.1 传统预测
1.2 图像识别
1.3 自然语言处理(nlp)

2.数据集包含:特征值 + 目标值

3.机器学习分为:监督学习 、非监督学习、半监督学习

4.机器学习开发流程:
4.1 获取数据
4.2 处理数据
4.3 特征工程
4.4 算法模型-- 模型
4.5 模型评估
4.6 应用

基础书籍:机器学习 -"西瓜书"- 周志华 统计学习方法 - 李航 深度学习 - "花书"

5.数据集:

5.1.sklearn

sklearn.datasets
load_ * 获取小规模的数据集 sklearn.datasets.load_iris()
fetch_ * 获取大规模的数据集

sklearn.datasets.fetch_20newsgroups(data_home=None,subset='train')

数据集的返回值

datasets.base.Bunch(继承自字典)

dict["key"] = values

bunch.key = values

5.2.kaggle

5.3.UCI

5.4数据集的划分:

训练集:用于训练,构建模型

测试集:在模型检验时使用,用于评估模型是否有效,20%~30%

sklearn.model_selection.triain_test_split(arrays, *options)
训练集特征值,训练集目标值,测试集特征值,测试集目标值

x_train,x_test,y_train,y_test

6.特征的提取

sklearn.feature_extraction

6.1 字典特征提取 - 类别--》one-hot 编码

sklearn.feature_extraction.DictVectorizer(sparse=True,...)

矩阵 matrix 二维数组

向量 vector 一维数组

6.2 文本特征提取

单词 作为 特征

句子、短语、单词、字母

特征:特征词
方法1:CountVectorizer

统计每个样本特征词出现的个数

stop_words停用的

停用词表

关键词:在某一个类别的文章中,出现的次数很多,但是在其他类别的文章当中出现很少
方法2:TfidfVectorizer

TF-IDF - 重要程度

TF - 词频(term frequency,tf)

IDF - 逆向文档频率

6.3 特征预处理

无量纲化

归一化:会有异常值影响大小

标准化:(x - mean) / std

标准差:集中程度

应用场景:在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。

  1. 特征降维
    7.1降低维度
    维数:嵌套的层数
    0维 标量
    1维 向量
    2维 矩阵
    3维
    n维
    二维数组:
    此处的降维:降低特征个数
    效果:消除特征与特征之间的相关性

主成分分析(PCA)

sklearn.decomposition.PCA(n_components=None)

n_components

小数 表示保留百分之多少的信息

整数 减少到多少特征

相关推荐
程序员泠零澪回家种桔子几秒前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC22373 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.13 分钟前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派14 分钟前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追15 分钟前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_9495936520 分钟前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON22 分钟前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
刘大大Leo28 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人31 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程39 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn