特斯拉全自动驾驶系统Tesla‘s Full-Self Driving (FSD)


版权声明


Overview

Tesla's FSD is a suite of features that includes Autopilot, Navigate on Autopilot, Auto Lane Change, Autopark, Summon, and Traffic Light and Stop Sign Control. It is designed to enable Tesla vehicles to drive autonomously on highways and city streets.

Technical Foundation

Tesla's Autopilot and FSD hardware suite includes 8 cameras that provide 360-degree visibility around the car, 12 ultrasonic sensors for detecting nearby objects, and forward-facing radar for through-the-weather sensing capabilities.

Earlier versions of Tesla's Autopilot used hardware from NVIDIA, but Tesla has since developed its own custom hardware, known as the Full Self-Driving Computer (FSD Computer), which is designed to handle the complex neural network algorithms required for autonomous driving.

Software Development

Tesla uses deep learning and neural networks to process the vast amount of sensory data. These networks are trained on a diverse set of driving scenarios to improve the system's ability to navigate roads safely.

Tesla collects anonymized driving data from its fleet to continuously improve the FSD system. This data helps Tesla's engineers to identify areas for improvement and to train the neural networks more effectively.

Safety Features

Tesla publishes regular safety reports detailing the performance of its Autopilot and FSD systems. These reports are part of Tesla's commitment to transparency and continuous improvement in vehicle safety.

FSD includes features designed to prevent accidents, such as automatic emergency braking and collision avoidance.

Future Outlook

Tesla is likely to continue its incremental approach to rolling out new FSD features, with each update building on the capabilities of the previous one.Tesla aims to make FSD a global feature, but the timeline will depend on regulatory approvals and the specific challenges of different driving environments around the world.

相关推荐
开发者每周简报30 分钟前
求职市场变化
人工智能·面试·职场和发展
AI前沿技术追踪43 分钟前
OpenAI 12天发布会:AI革命的里程碑@附35页PDF文件下载
人工智能
余~~185381628001 小时前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
galileo20161 小时前
LLM与金融
人工智能
DREAM依旧2 小时前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
ROBOT玲玉2 小时前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
GocNeverGiveUp2 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
浊酒南街3 小时前
决策树(理论知识1)
算法·决策树·机器学习
B站计算机毕业设计超人3 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条3 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学