机器学习-保险花销预测笔记+代码

读取数据

复制代码
import numpy as np
import pandas as pd

data=pd.read_csv(r'D:\人工智能\python视频\机器学习\5--机器学习-线性回归\5--Lasso回归_Ridge回归_多项式回归\insurance.csv',sep=',')
data.head(n=6)

EDA 数据探索

复制代码
import matplotlib.pyplot as plt
%matplotlib inline

plt.hist(data['charges'])
复制代码
#上图出现右偏现象,要变成正态分布形式
plt.hist(np.log(data['charges']),bins=20)

特征工程

复制代码
data=pd.get_dummies(data)
data.head()
复制代码
x=data.drop('charges',axis=1)
x
复制代码
y=data['charges']

x.fillna(0,inplace=True)
y.fillna(0,inplace=True)

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler(with_mean=True,with_std=True).fit(x_train)


x_train_scaled=scaler.transform(x_train)
x_test_scaled=scaler.transform(x_test)
x_train_scaled
复制代码
from sklearn.preprocessing import PolynomialFeatures
poly_features=PolynomialFeatures(degree=2,include_bias=False)
x_train_scaled=poly_features.fit_transform(x_train_scaled)
x_test_scaled=poly_features.fit_transform(x_test_scaled)

模型训练

复制代码
from sklearn.linear_model import LinearRegression


reg=LinearRegression()

reg.fit(x_train_scaled,np.log1p(y_train))
y_predict=reg.predict(x_test_scaled)

#%%
from sklearn.linear_model import Ridge
ridge=Ridge(alpha=0.4)

ridge.fit(x_train_scaled,np.log1p(y_train))
y_predict_ridge=ridge.predict(x_test_scaled)
#%%
from sklearn.ensemble import GradientBoostingRegressor
booster=GradientBoostingRegressor()

booster.fit(x_train_scaled,np.log1p(y_train))
y_predict_booster=ridge.predict(x_test_scaled)

模型评估

复制代码
from sklearn.metrics import mean_squared_error

#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=reg.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(reg.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(reg.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
python 复制代码
#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=ridge.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict_ridge))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(ridge.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(ridge.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
python 复制代码
#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=booster.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict_booster))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(booster.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(booster.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
相关推荐
YJlio32 分钟前
ProcDump 学习笔记(6.14):在调试器中查看转储(WinDbg / Visual Studio 快速上手)
笔记·学习·visual studio
知花实央l1 小时前
【Web应用安全】SQLmap实战DVWA SQL注入(从环境搭建到爆库,完整步骤+命令解读)
前端·经验分享·sql·学习·安全·1024程序员节
水凌风里1 小时前
格拉姆角场(Gramian Angular Field, GAF)详解
人工智能·机器学习
麦麦大数据2 小时前
F043 vue+flask天气预测可视化系统大数据(浅色版)+机器学习+管理端+爬虫+超酷界面+顶级可视化水平
大数据·vue.js·机器学习·flask·空气质量·天气预测·气温预测
青衫码上行2 小时前
【JavaWeb学习 | 第二篇】CSS(1) - 基础语法与核心概念
前端·css·学习
小白讲编程2 小时前
C++ 基础学习总结:从入门到构建核心认知
c++·学习·青少年编程
zzZ65652 小时前
U-net 系列算法总结
人工智能·深度学习·机器学习
deephub2 小时前
sklearn 特征选择实战:用 RFE 找到最优特征组合
人工智能·python·机器学习·sklearn·特征选择
罗小罗同学3 小时前
整合多中心临床试验的转录组与病理切片数据,提出面向晚期非小细胞肺癌免疫治疗疗效预测的解决方案
人工智能·机器学习·医学人工智能·医工交叉
青云交3 小时前
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用
java·机器学习·分布式计算·数据预处理·遥感图像·模型融合·土地利用分类