机器学习-保险花销预测笔记+代码

读取数据

import numpy as np
import pandas as pd

data=pd.read_csv(r'D:\人工智能\python视频\机器学习\5--机器学习-线性回归\5--Lasso回归_Ridge回归_多项式回归\insurance.csv',sep=',')
data.head(n=6)

EDA 数据探索

import matplotlib.pyplot as plt
%matplotlib inline

plt.hist(data['charges'])
#上图出现右偏现象,要变成正态分布形式
plt.hist(np.log(data['charges']),bins=20)

特征工程

data=pd.get_dummies(data)
data.head()
x=data.drop('charges',axis=1)
x
y=data['charges']

x.fillna(0,inplace=True)
y.fillna(0,inplace=True)

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler(with_mean=True,with_std=True).fit(x_train)


x_train_scaled=scaler.transform(x_train)
x_test_scaled=scaler.transform(x_test)
x_train_scaled
from sklearn.preprocessing import PolynomialFeatures
poly_features=PolynomialFeatures(degree=2,include_bias=False)
x_train_scaled=poly_features.fit_transform(x_train_scaled)
x_test_scaled=poly_features.fit_transform(x_test_scaled)

模型训练

from sklearn.linear_model import LinearRegression


reg=LinearRegression()

reg.fit(x_train_scaled,np.log1p(y_train))
y_predict=reg.predict(x_test_scaled)

#%%
from sklearn.linear_model import Ridge
ridge=Ridge(alpha=0.4)

ridge.fit(x_train_scaled,np.log1p(y_train))
y_predict_ridge=ridge.predict(x_test_scaled)
#%%
from sklearn.ensemble import GradientBoostingRegressor
booster=GradientBoostingRegressor()

booster.fit(x_train_scaled,np.log1p(y_train))
y_predict_booster=ridge.predict(x_test_scaled)

模型评估

from sklearn.metrics import mean_squared_error

#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=reg.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(reg.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(reg.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
python 复制代码
#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=ridge.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict_ridge))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(ridge.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(ridge.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
python 复制代码
#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=booster.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict_booster))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(booster.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(booster.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
相关推荐
Bearnaise14 分钟前
PointMamba: A Simple State Space Model for Point Cloud Analysis——点云论文阅读(10)
论文阅读·笔记·python·深度学习·机器学习·计算机视觉·3d
lucy1530275107933 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
幻风_huanfeng1 小时前
线性代数中的核心数学知识
人工智能·机器学习
怀旧6661 小时前
spring boot 项目配置https服务
java·spring boot·后端·学习·个人开发·1024程序员节
infiniteWei2 小时前
【Lucene】原理学习路线
学习·搜索引擎·全文检索·lucene
IT古董2 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习
follycat2 小时前
[极客大挑战 2019]PHP 1
开发语言·学习·网络安全·php
武子康3 小时前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans
武子康3 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
weixin_518285053 小时前
深度学习笔记11-神经网络
笔记·深度学习·神经网络