机器学习-保险花销预测笔记+代码

读取数据

复制代码
import numpy as np
import pandas as pd

data=pd.read_csv(r'D:\人工智能\python视频\机器学习\5--机器学习-线性回归\5--Lasso回归_Ridge回归_多项式回归\insurance.csv',sep=',')
data.head(n=6)

EDA 数据探索

复制代码
import matplotlib.pyplot as plt
%matplotlib inline

plt.hist(data['charges'])
复制代码
#上图出现右偏现象,要变成正态分布形式
plt.hist(np.log(data['charges']),bins=20)

特征工程

复制代码
data=pd.get_dummies(data)
data.head()
复制代码
x=data.drop('charges',axis=1)
x
复制代码
y=data['charges']

x.fillna(0,inplace=True)
y.fillna(0,inplace=True)

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler(with_mean=True,with_std=True).fit(x_train)


x_train_scaled=scaler.transform(x_train)
x_test_scaled=scaler.transform(x_test)
x_train_scaled
复制代码
from sklearn.preprocessing import PolynomialFeatures
poly_features=PolynomialFeatures(degree=2,include_bias=False)
x_train_scaled=poly_features.fit_transform(x_train_scaled)
x_test_scaled=poly_features.fit_transform(x_test_scaled)

模型训练

复制代码
from sklearn.linear_model import LinearRegression


reg=LinearRegression()

reg.fit(x_train_scaled,np.log1p(y_train))
y_predict=reg.predict(x_test_scaled)

#%%
from sklearn.linear_model import Ridge
ridge=Ridge(alpha=0.4)

ridge.fit(x_train_scaled,np.log1p(y_train))
y_predict_ridge=ridge.predict(x_test_scaled)
#%%
from sklearn.ensemble import GradientBoostingRegressor
booster=GradientBoostingRegressor()

booster.fit(x_train_scaled,np.log1p(y_train))
y_predict_booster=ridge.predict(x_test_scaled)

模型评估

复制代码
from sklearn.metrics import mean_squared_error

#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=reg.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(reg.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(reg.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
python 复制代码
#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=ridge.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict_ridge))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(ridge.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(ridge.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
python 复制代码
#log变换之后的
log_rmse_train=np.sqrt(mean_squared_error(y_true=np.log1p(y_train),y_pred=booster.predict(x_train_scaled))) 
log_rmse_test=np.sqrt(mean_squared_error(y_true=np.log1p(y_test),y_pred=y_predict_booster))
#没有做log变换的
rmse_train=np.sqrt(mean_squared_error(y_true=y_train,y_pred=np.exp(booster.predict(x_train_scaled))))
rmse_test=np.sqrt(mean_squared_error(y_true=y_test,y_pred=np.exp(booster.predict(x_test_scaled))))

log_rmse_train,log_rmse_test,rmse_train,rmse_test
相关推荐
k***921625 分钟前
【C++】继承和多态扩展学习
java·c++·学习
weixin_4407305026 分钟前
java结构语句学习
java·开发语言·学习
Fuly10241 小时前
大模型剪枝(Pruning)技术简介
算法·机器学习·剪枝
航Hang*1 小时前
Photoshop 图形与图像处理技术——第8章:图像的色彩与色彩调整和图像的输出与优化
图像处理·笔记·ui·photoshop
山海青风1 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 6 模型训练
人工智能·python·机器学习
l木本I1 小时前
Reinforcement Learning for VLA(强化学习+VLA)
c++·人工智能·python·机器学习·机器人
小桥流水---人工智能1 小时前
风电机组故障诊断与状态监测方法的研究局限性整理(背景笔记)
笔记
551只玄猫2 小时前
KNN算法基础 机器学习基础1 python人工智能
人工智能·python·算法·机器学习·机器学习算法·knn·knn算法
无名小猴2 小时前
TryHackMe——迎2025入门教程(一)
学习
NetDefend2 小时前
minimind-学习记录-环境的配置与跑通
学习