【跟马少平老师学AI】-【神经网络是怎么实现的】(六)过拟合问题

一句话归纳:
1)过拟合问题:

  • 图中的点为样本
  • 直线欠拟合
  • 曲线2过拟合

2)迭代次数与拟合情况:

  • 训练次数过多可能导致过拟合。

3)正则化项法弱化过拟后问题:

  • 加正则项,在最小化损失函数时抑制了个别参数影响过大导致的过拟合。

4)舍弃法弱化过拟合:

  • 通过训练多个简化的神经网络(丢弃部分参数)弱化过拟合。
  • 又保持使用过所有神经元。

5)数据增强法:

  • 训练数据足够多(样本多样性)。
  • 通过旋转、截取、缩放等方法获取数据。
相关推荐
昨夜见军贴06162 分钟前
IACheck × AI审核:重构来料证书报告审核流程,赋能生产型企业高质量发展
人工智能·重构
OidEncoder5 分钟前
绝对值编码器工作原理、与增量编码器的区别及单圈多圈如何选择?
人工智能
计算机科研狗@OUC10 分钟前
(NeurIPS25) Spiking Meets Attention: 基于注意力脉冲神经网络的高效遥感图像超分辨率重建
人工智能·神经网络·超分辨率重建
EasyGBS12 分钟前
EasyGBS打造变电站高效智能视频监控解决方案
网络·人工智能·音视频
汤姆yu12 分钟前
基于深度学习的杂草检测系统
人工智能·深度学习
LaughingZhu12 分钟前
Product Hunt 每日热榜 | 2026-01-06
人工智能·经验分享·深度学习·神经网络·产品运营
东方佑13 分钟前
SamOutVXP-2601: 轻量级高效语言模型
人工智能·语言模型·自然语言处理
管理快车道15 分钟前
连锁零售利润增长:我的实践复盘
大数据·人工智能·零售
wyw000015 分钟前
模型蒸馏(知识蒸馏)完整实操步骤 & 落地指南
机器学习
狮子座明仔16 分钟前
HierGR:美团外卖搜索的层级语义生成式检索系统
人工智能·深度学习·语言模型·自然语言处理