【跟马少平老师学AI】-【神经网络是怎么实现的】(六)过拟合问题

一句话归纳:
1)过拟合问题:

  • 图中的点为样本
  • 直线欠拟合
  • 曲线2过拟合

2)迭代次数与拟合情况:

  • 训练次数过多可能导致过拟合。

3)正则化项法弱化过拟后问题:

  • 加正则项,在最小化损失函数时抑制了个别参数影响过大导致的过拟合。

4)舍弃法弱化过拟合:

  • 通过训练多个简化的神经网络(丢弃部分参数)弱化过拟合。
  • 又保持使用过所有神经元。

5)数据增强法:

  • 训练数据足够多(样本多样性)。
  • 通过旋转、截取、缩放等方法获取数据。
相关推荐
啊阿狸不会拉杆几秒前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
薯一个蜂蜜牛奶味的愿几秒前
模块化显示神经网络结构的可视化工具--BlockShow
人工智能·深度学习·神经网络
班德先生4 分钟前
深耕多赛道品牌全案策划,为科技与时尚注入商业表达力
大数据·人工智能·科技
哈__5 分钟前
CANN加速强化学习推理:策略网络与价值网络优化
人工智能
慢半拍iii10 分钟前
ops-nn性能调优实战:提升神经网络推理速度的秘诀
人工智能·神经网络·ai·cnn·cann
hay_lee13 分钟前
Spring AI实现对话聊天-流式输出
java·人工智能·ollama·spring ai
塔中妖20 分钟前
CANN深度解读:从算子库看AI计算的底层架构
人工智能·架构
铁蛋AI编程实战21 分钟前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
weixin_5498083621 分钟前
2026 中国 AI 招聘系统市场观察:从效率工具到智能体协同,招聘正被重新定义
人工智能
张较瘦_25 分钟前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习