吴恩达机器学习笔记 三十七 电影推荐系统 使用特征 成本函数 协同过滤算法

以电影评分系统为例,令 r(i, j) 来表示用户 j 已经对电影 i 评分, y(i, j)表示评分具体是多少。

假如每部电影有自己的特征,那么用户 j 对电影 i 的评分预测为 w(j) * x(i) + b(j)

r(i, j) :一个用户 j 是否对电影 i 进行了评分, 1 为已评

y(i, j):用户 j 对电影 i 的评分

w(j) b(j):用户 j 的参数

x(i):电影 i 的特征向量

成本函数如下,最后一项是正则化项。其中除以m(j)可以忽略,因为是常数。

对于所有用户,成本函数只需要把这 nu 个用户的成本函数加起来即可。

假设我们不知道电影的特征向量 x,而Alice给第一部电影评分为5,Bob给第二部电影评分为5,可得 w1*x1约为5,w2*x1约为5,找到一个合适的向量 x 满足方程组即可。注意,只有一个用户的时候是算不出来的。

学习 x 的成本函数

协同过滤:将多个用户的信息收集起来帮助预测其他用户的评分

将上面两个学习 w b和学习 x 的成本函数加到一起

此时的梯度下降不仅要考虑 w b,还要考虑 x

相关推荐
科士威传动8 分钟前
丝杆支撑座同轴度如何安装?
人工智能·科技·机器学习·自动化
Dream Algorithm1 小时前
自古英雄多寂寥
笔记
_Li.1 小时前
机器学习-集成学习
人工智能·机器学习·集成学习
yuhaiqun19891 小时前
Typora 技能进阶:从会写 Markdown 到玩转配置 + 插件高效学习笔记
经验分享·笔记·python·学习·学习方法·ai编程·markdown
apcipot_rain1 小时前
汇编语言与逆向分析 一轮复习笔记
汇编·笔记·逆向
极度畅想1 小时前
脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)
机器学习·knn·脑机接口·情绪识别·bci·canberra距离
Lv11770082 小时前
Visual Studio中的多态
ide·笔记·c#·visual studio
HollowKnightZ2 小时前
论文阅读笔记:Class-Incremental Learning: A Survey
论文阅读·笔记
一个没有感情的程序猿2 小时前
前端实现人体骨架检测与姿态对比:基于 MediaPipe 的完整方案
机器学习·计算机视觉·前端框架·开源
Dev7z2 小时前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶