使用OpenCV实现图像平移

使用OpenCV实现图像平移

程序流程

  1. 读取图像并获取其高度、宽度和通道数。
  2. 定义平移量tx和ty,并创建平移矩阵M。
  3. 使用cv2.warpAffine函数对图像进行仿射变换(平移),得到平移后的图像。
  4. 显示平移后的图像。
  5. 等待用户按键并关闭显示窗口。
  6. 保存平移后的图像到文件。

效果

原图:

平移后的图:

代码

python 复制代码
import cv2
import numpy as np

# 读取图像
img = cv2.imread('liu_1.jpeg')

# 获取图像的高度和宽度
rows, cols, ch = img.shape

# 定义平移矩阵,tx和ty是x和y方向的平移量
# 这里我们假设tx=100, ty=50
tx = 100
ty = 50

# 创建平移矩阵 M,这里我们使用了numpy的float32类型
# 注意OpenCV的warpAffine函数需要这个数据类型
M = np.float32([[1, 0, tx], [0, 1, ty]])

# 进行仿射变换,使用线性插值(INTER_LINEAR)
# 注意这里dsize参数指定了输出图像的大小,这里我们简单地使用原图像的大小
# 如果你想让图像在平移后填充一些空白区域,你需要调整这个参数
translated = cv2.warpAffine(img, M, (cols, rows))

# 显示平移后的图像
cv2.imshow('Translated Image', translated)

# 等待按键并关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

# 如果你还想保存平移后的图像
cv2.imwrite('translated.jpg', translated)
相关推荐
Work(沉淀版)1 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空2 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问2 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven2 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5163 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊3 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin5 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
jndingxin6 小时前
OpenCV CUDA模块图像处理-----对图像执行 均值漂移过程(Mean Shift Procedure)函数meanShiftProc()
图像处理·opencv
归去_来兮6 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻6 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉