pytorch的基础操作

目录

一、介绍

二、基础操作

1、张量的基础创建

2、随机创建与转换

3、张量的索引

4、张量的切片

5、张量的维度改变

三、官方手册

中文官方手册,可以查


一、介绍

PyTorch是Torch的Python版本,是由Facebook开源的神经网络框架,专门针对GPU加速的深度神经网络编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(Tensor)库,在机器学习和其他数学密集型应用有广泛应用。与TensorFlow的静态计算图不同,PyTorch的的计算图是动态的,可以根据计算需要实时改变计算图。

PyTorch的设计追求最少的封装,PyTorch 的设计遵循Tensor--- Variable(Autograd)一nn.Module三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量) 和神经网络(层/模块),而且这三个抽象之间联系紧密,可以同时进行修改和操作。

二、基础操作

PyTorch处理的最基本的操作对象就是张量(Tensor),它表示的就是一个多维矩阵,并有矩阵相关的运算操作PyTorch中张量 ( Tensor) 和NamPy中的数组 非常相似:只是 Tensor 可以在GPU中运算运算,可以进行自动求梯度等操作,在使用时也会经常将PyTorch中的张量和Numpy中的数组相互转换Tensor的数据类型:浮点型和整型,一般常用的就是32位浮点型(torch.Float Tensor),此外还有64位浮点型(torch.DoubleTensor)、32位整型(torch.IntTensor、16位整型(torch Shortlensor) 64位整型(torch.Long Tensor)等

导入包

python 复制代码
import torch

1、张量的基础创建

python 复制代码
    '''张量的创建'''

    # 简单创建
    a = torch.Tensor([[1, 2], [3, 4]])
    print(a)

    # 2 * 4 全为1的矩阵
    a = torch.ones(2,4)
    print(a)
    # 3 * 3 全为0的矩阵
    a = torch.zeros(3,3)
    print(a)
    # 对角线全为1的矩阵
    a = torch.eye(5,5)
    print(a)
    # 10 ~ 10^2 中随机抽取8个数
    a = torch.logspace(1,2,8)
    print(a)
    # 1到10之间分成8等份
    a = torch.linspace(1,10,8)
    print(a)
    # 1到10之间,步长为2
    a = torch.arange(1,10,2)
    print(a)

2、随机创建与转换

python 复制代码
    # 随机生成张量
    a = torch.rand(2,2)
    print(a)

    # 生成的数据服从正态分布 均值默认为0 方差为1
    a = torch.randn(2, 2)
    print(a)

    # 3 * 3 矩阵 值大小为 1 ~ 3
    a = torch.randint(1,3,(3,3))
    print(a)

    # 张量的转化
    a = np.arange(1,13).reshape(3,4)
    print(a)
    # array转化为张量
    b  = torch.from_numpy(a)
    print(b)
    # 张量转化为array
    c = b.numpy()
    print(c)

3、张量的索引

张量的索引|是从0开始的,比如我们创建一个四维的张量:torch.Tensor(2,3,128,128)
这个张量表示的是2张3通道的128*128大小的彩色图像,第一个维度(维度0))为图像的数量,维度1为图像的通道数,维度2、3为图像的高宽(像素数量)

python 复制代码
 '''张量索引'''
    a = torch.Tensor(2, 3, 128, 128)
    print(a.shape)  # 四维张量
    print(a[0].shape)
    print(a[0][0].shape)
    print(a[0][0][0].shape)
    print('_' * 10)

4、张量的切片

通过上述方法,可以取到张量的某维度全部数据,但是如果我们只想要部分数据如何操作呢,这个我们就可以使用切片
切片语法格式与之前所学的一样,为:tensorlstart:end:step]

python 复制代码
a = torch.Tensor(2, 3, 128, 128)
    print(a[:1, :, :, :].shape)
    print(a[:1, :1, :, :].shape)
    print(a[:1, :1, :64, :64].shape)
    print(a[:1, :1, :1, :1].shape)
    print(a[0:1, :1, :64:2, :64:2].shape)

5、张量的维度改变

当我们进行具体实验时,我们会发现不同的模型需要对应不同的维度,因此我们需要了解张量的维度变换,可以使用reshape来进行维度的调整,变换后的总元素数量要一致

python 复制代码
''' 维度的改变'''
    a = torch.Tensor(2, 3, 128, 128)
    print(a.shape)
    b = a.reshape(2, 3, 128 * 128)
    print(b.shape)
    b = a.reshape(2, 3, -1) # -1是自动计算维度
    print(b.shape)
    c = a.reshape(4, -1)  # 2*3*128*128   /  4
    print(c.shape)
    print('-'*50)

    '''维度交换'''
    a = torch.Tensor(2, 3, 128, 128)  # 交换维度 但是只能交换二个
    print(a.transpose(0, 1).shape)
    a = torch.Tensor(2, 3, 128, 130)  # 交换维度 可以是多个
    print(a.permute(1, 0, 3, 2).shape)

    '''维度扩充'''
    a = torch.Tensor(2, 1, 128, 128)  # 维度扩充
    print(a.expand(2, 3, 128, 128).shape)

三、官方手册

中文官方手册,可以查

相关推荐
yy我不解释2 分钟前
关于comfyui的comfyui-prompt-reader-node节点(import failed)和图片信息问题(metadata)
python·ai作画·prompt
Coder_Boy_3 分钟前
【DDD领域驱动开发】基础概念和企业级项目规范入门简介
java·开发语言·人工智能·驱动开发
起风了___3 分钟前
Flask生产级模板:统一返回、日志、异常、JSON编解码,开箱即用可扩展
后端·python
BoBoZz194 分钟前
SmoothDiscreteMarchingCubes 多边形网格数据的平滑
python·vtk·图形渲染·图形处理
乾元6 分钟前
Syslog / Flow / Telemetry 的 AI 聚合与异常检测实战(可观测性)
运维·网络·人工智能·网络协议·华为·自动化·ansible
大千AI助手7 分钟前
编辑相似度(Edit Similarity):原理、演进与多模态扩展
人工智能·机器学习·大模型·编辑距离·相似度·大千ai助手·编辑相似度
数智顾问10 分钟前
(102页PPT)数字化转型,从战略到执行(附下载方式)
大数据·人工智能·物联网
XiaoMu_00111 分钟前
多场景头盔佩戴检测
人工智能·python·深度学习
民乐团扒谱机12 分钟前
【微实验】谱聚类之大规模数据应用——Nyström 方法
人工智能·算法·机器学习·matlab·数据挖掘·聚类·谱聚类
leafff12316 分钟前
一文了解:智能体大模型LangChain 和 Dify有什么区别?
人工智能·架构·langchain