LSTM实战笔记(部署到C++上)——更新中

前几天由于自己的个人原因停止了学习

接下里继续更新一些自己项目中所用到的神经网络等


LSTM代码介绍

建立LSTM模型时需要设置一些参数,包括输入数据的形状、LSTM层的参数、输出层的参数等。以下是建立LSTM模型时可能需要设置的一些参数:

1. 输入数据形状:

LSTM模型需要输入3D张量作为训练数据,其形状通常为 `(样本数, 时间步数, 特征数)`。你需要确保你的输入数据在转换为3D张量后具有正确的形状。

2. LSTM层参数:

LSTM层有一些参数需要设置,包括:

  • `units `:LSTM层的输出维度(也可以理解为神经元数量)。

  • `activation `:激活函数,通常为 `tanh` 或者 `sigmoid`。

  • `input_shape `:输入数据的形状,通常只在第一层需要设置。

  • `return_sequences`:如果为True,则返回每个时间步的输出,否则只返回最后一个时间步的输出。

3. 输出层参数:

输出层通常是一个全连接层,其中需要设置输出的维度和激活函数。

4. 损失函数和优化器:

根据你的问题和模型配置,你需要选择合适的损失函数和优化器。对于时间序列预测问题,通常选择的是均方误差(MSE)作为损失函数,而优化器可以选择 Adam 等。

5. 批量大小和训练轮数:

这些参数决定了模型的训练方式,批量大小是每次训练时使用的样本数,训练轮数是指整个训练数据集被遍历的次数。

下面是一个简单的例子,展示了如何建立一个简单的LSTM模型:

python 复制代码
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 建立模型
model = Sequential()

# 添加LSTM层
model.add(LSTM(units=50, input_shape=(n_steps, n_features), return_sequences=True))
# 添加更多LSTM层(可选)
# model.add(LSTM(units=50, return_sequences=True))
# model.add(LSTM(units=50))

# 添加输出层
model.add(Dense(units=1))

# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')

在这个例子中,`units=50` 表示LSTM层有50个神经元,`input_shape=(n_steps, n_features)` 是输入数据的形状,其中 `n_steps` 是时间步数,`n_features` 是特征数。输出层只有一个神经元,因为这是一个回归问题。损失函数选择的是均方误差,优化器选择的是Adam。

LSTM代码案例

相关推荐
CODECOLLECT14 分钟前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能
北京迅为18 分钟前
《【北京迅为】itop-3568开发板NPU使用手册》- 第 7章 使用RKNN-Toolkit-lite2
linux·人工智能·嵌入式·npu
我是一只puppy24 分钟前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI25 分钟前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
esmap28 分钟前
ESMAP 智慧消防解决方案:以数字孪生技术构建全域感知消防体系,赋能消防安全管理智能化升级
人工智能·物联网·3d·编辑器·智慧城市
LaughingZhu32 分钟前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
芷栀夏41 分钟前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
用户51914958484543 分钟前
CVE-2025-47812:Wing FTP Server 高危RCE漏洞分析与利用
人工智能·aigc
阿里云大数据AI技术1 小时前
【AAAI2026】阿里云人工智能平台PAI视频编辑算法论文入选
人工智能
玄同7651 小时前
我的 Trae Skill 实践|使用 UV 工具一键搭建 Python 项目开发环境
开发语言·人工智能·python·langchain·uv·trae·vibe coding