自编码器网络

1.自编码器网络

自动编码器是一种无监督数据维度压缩数据特征表达方法

无监督

在海量数据的场景下,使用无监督的学习方法比有监督的学习方法更省力。

维度上的压缩

自编码网络可以根据输入的数据,对其进行表征学习。输入数据转换到隐藏层code时,隐藏层code的神经元数目低于输入层神经元,由于使用了更少的神经元表示了原数据,所以可以对数据进行降维。

数据特征表达方法

通过上图中的decoder解码器输出的就是经过处理的数据特征,自编码器的目的就是让输出能够在数据特征的角度上表示输入。

自编码器原理

我们希望神经网络能够学习到映射 𝒙 → 𝒙~

把网络切分为两个部分,前面的子网络尝试学习映射关系:: 𝒙 → 𝒛,后面的子网络尝试学习映射关系: 𝒛 → 𝒙。 把看成一个数据编码(Encode)的过程,把高维度的输入𝒙编码成低维度的隐变量𝒛(Latent Variable,或隐藏变量),称为 Encoder 网络(编码器); 看成数据解码(Decode)的过程,把编码过后的输入𝒛解码为高维度的𝒙, 称为 Decoder 网络(解码器)

2.能做什么?

自编码器具有一般意义上表征学习算法的功能,被应用于降维(dimensionality reduction)和异常值检测(anomaly detection) 。包含卷积层构筑的自编码器可被应用于计算机视觉问题,包括图像降噪(image denoising) 、神经风格迁移(neural style transfer)等 。

图像降噪

如图所示,自编码网络会在encode过程中提取原图片中的关键数据特征,并在decode过程中进行修复。

异常检测

todo

3.怎么实现?

java体系下有deeplearning4j库可以实现深度学习的相关算法

Eclipse Deeplearning4j · GitHub

相关推荐
小鸡吃米…6 分钟前
带Python的人工智能——深度学习
人工智能·python·深度学习
TheITSea11 分钟前
Java中的Optional:从入门到精通
java·开发语言
程序员侠客行16 分钟前
Mybatis入门到精通 一
java·架构·mybatis
糕......17 分钟前
Java异常处理完全指南:从概念到自定义异常
java·开发语言·网络·学习
小徐Chao努力18 分钟前
【Langchain4j-Java AI开发】04-AI 服务核心模式
java·人工智能·python
不会码码20 分钟前
L1范数,L2范数,L3范数,切比雪夫距离
机器学习
白日做梦Q26 分钟前
预训练模型微调(Finetune)实战:策略、技巧及常见误区规避
人工智能·python·神经网络·机器学习·计算机视觉
刘宇涵4929 分钟前
Javalength
java
历程里程碑30 分钟前
双指针巧解LeetCode接雨水难题
java·开发语言·数据结构·c++·python·flask·排序算法
玄同76531 分钟前
Python 流程控制:LLM 批量推理与 API 限流处理
服务器·人工智能·python·深度学习·自然语言处理·数据挖掘·知识图谱