ollama-python-Python快速部署Llama 3等大型语言模型最简单方法

ollama介绍

在本地启动并运行大型语言模型。运行Llama 3、Phi 3、Mistral、Gemma和其他型号。

Llama 3

Meta Llama 3 是 Meta Inc. 开发的一系列最先进的模型,提供8B70B参数大小(预训练或指令调整)。

Llama 3 指令调整模型针对对话/聊天用例进行了微调和优化,并且在常见基准测试中优于许多可用的开源聊天模型。

安装

pip install ollama

高性价比GPU资源:https://www.ucloud.cn/site/active/gpu.html?ytag=gpu_wenzhang_tongyong_shemei

用法

import ollamaresponse = ollama.chat(model='llama2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', },])print(response['message']['content'])

流式响应

可以通过设置stream=True、修改函数调用以返回 Python 生成器来启用响应流,其中每个部分都是流中的一个对象。

import ollama stream = ollama.chat( model='llama2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}], stream=True, ) for chunk in stream: print(chunk['message']['content'], end='', flush=True)

应用程序编程接口

Ollama Python 库的 API 是围绕Ollama REST API设计的

聊天

ollama.chat(model='llama2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}])

新增

ollama.generate(model='llama2', prompt='Why is the sky blue?')

列表

ollama.list()

展示

ollama.show('llama2')

创建

modelfile=''' FROM llama2 SYSTEM You are mario from super mario bros. ''' ollama.create(model='example', modelfile=modelfile)

复制

ollama.copy('llama2', 'user/llama2')

删除

ollama.delete('llama2') Pull ollama.pull('llama2') push ollama.push('user/llama2')

嵌入

ollama.embeddings(model='llama2', prompt='The sky is blue because of rayleigh scattering')

定制客户端

可以使用以下字段创建自定义客户端:

  • host:要连接的 Ollama 主机
  • timeout: 请求超时时间

from ollama import Client client = Client(host='http://localhost:11434') response = client.chat(model='llama2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ])

异步客户端

import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} response = await AsyncClient().chat(model='llama2', messages=[message]) asyncio.run(chat())

设置stream=True修改函数以返回 Python 异步生成器:

import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} async for part in await AsyncClient().chat(model='llama2', messages=[message], stream=True): print(part['message']['content'], end='', flush=True) asyncio.run(chat())

错误

如果请求返回错误状态或在流式传输时检测到错误,则会引发错误。

model = 'does-not-yet-exist'try: ollama.chat(model)except ollama.ResponseError as e: print('Error:', e.error)if e.status_code == 404: ollama.pull(model)

相关推荐
美狐美颜SDK开放平台11 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩11 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly12 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_4369621812 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉13 小时前
BERT 完整教程指南
人工智能·深度学习·bert
JD技术委员会13 小时前
如何在跨部门沟通失误后进行协调与澄清
人工智能
PcVue China13 小时前
PcVue X 工控——工厂数字化转型与落地巡回研讨会圆满举行
人工智能·软件工程·scada·监控平台·工控网
StarPrayers.14 小时前
自蒸馏学习方法
人工智能·算法·学习方法
雾岛心情14 小时前
【ComfyUI】ComfyUI 的WordCloud词云节点
aigc·comfyui
咚咚王者14 小时前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python