ollama-python-Python快速部署Llama 3等大型语言模型最简单方法

ollama介绍

在本地启动并运行大型语言模型。运行Llama 3、Phi 3、Mistral、Gemma和其他型号。

Llama 3

Meta Llama 3 是 Meta Inc. 开发的一系列最先进的模型,提供8B70B参数大小(预训练或指令调整)。

Llama 3 指令调整模型针对对话/聊天用例进行了微调和优化,并且在常见基准测试中优于许多可用的开源聊天模型。

安装

pip install ollama

高性价比GPU资源:https://www.ucloud.cn/site/active/gpu.html?ytag=gpu_wenzhang_tongyong_shemei

用法

import ollamaresponse = ollama.chat(model='llama2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', },])print(response['message']['content'])

流式响应

可以通过设置stream=True、修改函数调用以返回 Python 生成器来启用响应流,其中每个部分都是流中的一个对象。

import ollama stream = ollama.chat( model='llama2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}], stream=True, ) for chunk in stream: print(chunk['message']['content'], end='', flush=True)

应用程序编程接口

Ollama Python 库的 API 是围绕Ollama REST API设计的

聊天

ollama.chat(model='llama2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}])

新增

ollama.generate(model='llama2', prompt='Why is the sky blue?')

列表

ollama.list()

展示

ollama.show('llama2')

创建

modelfile=''' FROM llama2 SYSTEM You are mario from super mario bros. ''' ollama.create(model='example', modelfile=modelfile)

复制

ollama.copy('llama2', 'user/llama2')

删除

ollama.delete('llama2') Pull ollama.pull('llama2') push ollama.push('user/llama2')

嵌入

ollama.embeddings(model='llama2', prompt='The sky is blue because of rayleigh scattering')

定制客户端

可以使用以下字段创建自定义客户端:

  • host:要连接的 Ollama 主机
  • timeout: 请求超时时间

from ollama import Client client = Client(host='http://localhost:11434') response = client.chat(model='llama2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ])

异步客户端

import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} response = await AsyncClient().chat(model='llama2', messages=[message]) asyncio.run(chat())

设置stream=True修改函数以返回 Python 异步生成器:

import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} async for part in await AsyncClient().chat(model='llama2', messages=[message], stream=True): print(part['message']['content'], end='', flush=True) asyncio.run(chat())

错误

如果请求返回错误状态或在流式传输时检测到错误,则会引发错误。

model = 'does-not-yet-exist'try: ollama.chat(model)except ollama.ResponseError as e: print('Error:', e.error)if e.status_code == 404: ollama.pull(model)

相关推荐
冷眼看人间恩怨4 分钟前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041086 分钟前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型