基于picklerpc的pytorch单算子测试[单算子远程测试]

基于picklerpc的pytorch单算子测试[单算子远程测试]

通过主流大模型测试程序-用于导出算子列表 得到了算子类型及参数信息。我希望对比每个算子在不同硬件平台上的性能和误差。如果将所有的结果都存成文件,则占用空间太大。下文演示了如何使用picklerpc 将算子类型及参数传递到远程服务器测试

一.服务端

python 复制代码
from picklerpc import PickleRPCServer
import torch
import numpy as np
import time
import traceback

class TorchOpRunner(PickleRPCServer):
    def __init__(self, addr=('localhost', 8080)):
        super().__init__(addr)

    def run(self,op_type,input_desc):
        input_args=[]
        input_kwargs={}

        for arg in input_desc:
            seed,shape,dtype,device=arg
            torch.random.manual_seed(seed)
            input_args.append(torch.rand(shape,dtype=dtype,device=device))

        op=eval(f"torch.ops.{op_type}")
        warmup_count=1
        test_count=3

        record={}
        record["error"]=0

        try:
            for _ in range(warmup_count):
                output=op(*input_args,**input_kwargs)
            torch.cuda.synchronize()

            t0=time.time()
            for _ in range(test_count):
                output=op(*input_args,**input_kwargs)    
            torch.cuda.synchronize()
            t1=time.time()

            latency=(t1-t0)/test_count

            all=[]
            if isinstance(output,torch.Tensor):
                all.append(output.detach().cpu().float().numpy().reshape(-1))
            elif isinstance(output,list) or isinstance(output,tuple):
                for out in output:
                    if isinstance(out,torch.Tensor):   
                        all.append(out.detach().cpu().float().numpy().reshape(-1))
            else:
                print("error type:",type(output))
                record["error"]=3
            
            if len(all)!=0 and record["error"]==0:
                all=np.concatenate(all,axis=0)
                if all.shape[0]>0:
                    record["data"]=all
                else:
                    record["error"]=5
            else:
                 record["error"]=4
            record["latency"]=latency
            return record
        except:
            traceback.print_exc()
            record["error"]=6
            return record
    
    def raise_error(self):
        """Raise an error"""
        raise NotImplementedError('Not ready')

if __name__ == '__main__':
    srv = TorchOpRunner(addr=('localhost',10001))
    srv.register_function(srv.run)
    srv.serve_forever()

二.客户端

python 复制代码
import torch
import picklerpc

def main():
    op_type="aten.gelu_backward.default"
    seed=0
    shape=(1,512,40,128)
    dtype=torch.float32
    device="cuda:0"
    input_desc=[(seed,shape,dtype,device),(seed,shape,dtype,device)]
    client = picklerpc.PickleRPCClient(('localhost', 10001))
    output=client.run(op_type,input_desc)
    print(output["error"],output["data"].shape)

main()
相关推荐
TGITCIC2 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
@forever@3 小时前
【JAVA】LinkedList与链表
java·python·链表
程序员爱钓鱼3 小时前
Python编程实战:面向对象与进阶语法——类型注解与代码规范(PEP 8)
后端·python·ipython
程序员爱钓鱼3 小时前
Python实战:用高德地图API批量获取地址所属街道并写回Excel
后端·python·ipython
reasonsummer5 小时前
【教学类-97-06】20251105“葡萄”橡皮泥黏贴(小班主题《苹果与橘子》)
python
chenzhiyuan20185 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1435 小时前
51c深度学习~合集11
人工智能
Tiandaren5 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
卖个几把萌5 小时前
【16】Selenium+Python 接管已打开谷歌浏览器
python·selenium·测试工具
像风一样的男人@6 小时前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo