基于picklerpc的pytorch单算子测试[单算子远程测试]

基于picklerpc的pytorch单算子测试[单算子远程测试]

通过主流大模型测试程序-用于导出算子列表 得到了算子类型及参数信息。我希望对比每个算子在不同硬件平台上的性能和误差。如果将所有的结果都存成文件,则占用空间太大。下文演示了如何使用picklerpc 将算子类型及参数传递到远程服务器测试

一.服务端

python 复制代码
from picklerpc import PickleRPCServer
import torch
import numpy as np
import time
import traceback

class TorchOpRunner(PickleRPCServer):
    def __init__(self, addr=('localhost', 8080)):
        super().__init__(addr)

    def run(self,op_type,input_desc):
        input_args=[]
        input_kwargs={}

        for arg in input_desc:
            seed,shape,dtype,device=arg
            torch.random.manual_seed(seed)
            input_args.append(torch.rand(shape,dtype=dtype,device=device))

        op=eval(f"torch.ops.{op_type}")
        warmup_count=1
        test_count=3

        record={}
        record["error"]=0

        try:
            for _ in range(warmup_count):
                output=op(*input_args,**input_kwargs)
            torch.cuda.synchronize()

            t0=time.time()
            for _ in range(test_count):
                output=op(*input_args,**input_kwargs)    
            torch.cuda.synchronize()
            t1=time.time()

            latency=(t1-t0)/test_count

            all=[]
            if isinstance(output,torch.Tensor):
                all.append(output.detach().cpu().float().numpy().reshape(-1))
            elif isinstance(output,list) or isinstance(output,tuple):
                for out in output:
                    if isinstance(out,torch.Tensor):   
                        all.append(out.detach().cpu().float().numpy().reshape(-1))
            else:
                print("error type:",type(output))
                record["error"]=3
            
            if len(all)!=0 and record["error"]==0:
                all=np.concatenate(all,axis=0)
                if all.shape[0]>0:
                    record["data"]=all
                else:
                    record["error"]=5
            else:
                 record["error"]=4
            record["latency"]=latency
            return record
        except:
            traceback.print_exc()
            record["error"]=6
            return record
    
    def raise_error(self):
        """Raise an error"""
        raise NotImplementedError('Not ready')

if __name__ == '__main__':
    srv = TorchOpRunner(addr=('localhost',10001))
    srv.register_function(srv.run)
    srv.serve_forever()

二.客户端

python 复制代码
import torch
import picklerpc

def main():
    op_type="aten.gelu_backward.default"
    seed=0
    shape=(1,512,40,128)
    dtype=torch.float32
    device="cuda:0"
    input_desc=[(seed,shape,dtype,device),(seed,shape,dtype,device)]
    client = picklerpc.PickleRPCClient(('localhost', 10001))
    output=client.run(op_type,input_desc)
    print(output["error"],output["data"].shape)

main()
相关推荐
天涯海风1 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs2 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java3 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV3 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
念念01073 小时前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
Black_Rock_br3 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
云天徽上4 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
☺����4 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine4 小时前
机器学习——数据清洗
人工智能·机器学习
王者鳜錸4 小时前
PYTHON让繁琐的工作自动化-函数
开发语言·python·自动化