117篇 | 3D Gaussian Splatting论文

本论文集划分为4个部分:综述&基础(14篇)、NeRF在AIGC(54篇)、NeRF在SLAM(自动驾驶)(25篇)、NeRF之场景建模(25篇)

https://t.zsxq.com/3ATyEhttps://t.zsxq.com/3ATyE

3D Gaussian Splatting(3DGS)是一种用于实时辐射场渲染的光栅化技术,它通过对3D高斯分布的描述,实现了实时渲染从小图像样本中学习到的逼真场景。该技术的核心是光栅化,即将3D高斯分布以像素的形式展现在2D平面上。以下是关于3DGS的详细介绍:

3D GS的实现原理分为以下几个步骤:

  1. 运动结构恢复(SfM):通过一组图像估计点云,这是从2D图像估计3D点云的一种方法,可以通过COLMAP库实现。

  2. 转换为高斯分布:将每个点转换为高斯分布,这对于光栅化已经足够。然而,仅从SfM数据中只能推断出位置和颜色,为了学习产生高质量结果的表示,需要对其进行训练。

  3. 模型训练:训练过程使用随机梯度下降,类似于神经网络,但没有层。训练步骤包括:根据光栅化图像和地面真实图像之间的差异计算损失。

  4. 可微分高斯光栅化:光栅化器是可微分的,因此可以用随机梯度下降进行训练。然而,这仅与训练相关 - 训练有素的高斯也可以用不可微的方法呈现。

3DGS受到广泛关注的原因主要有以下几点:

  1. 高质量的实时场景渲染:通过3DGS技术,可以实现实时渲染从小图像样本中学习到的逼真场景。

  2. 技术未知领域的探索:关于Gaussian Splatting还能做什么还有很多未知数,例如是否可以模拟反射等。

  3. 对嵌入式人工智能研究的兴趣:人们越来越关注如何将人工智能技术应用于3D空间表示等领域。

相关推荐
新知图书41 分钟前
OpenCV单窗口显示多图片
人工智能·opencv·计算机视觉
荷包蛋蛋怪43 分钟前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
KarudoLee1 小时前
AIGC7——AIGC驱动的视听内容定制化革命:从Sora到商业化落地
人工智能·aigc
QQ_7781329741 小时前
OpenCV引擎:驱动实时应用开发的科技狂飙
opencv·计算机视觉
羑悻的小杀马特4 小时前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
蹦蹦跳跳真可爱5895 小时前
Python----计算机视觉处理(Opencv:道路检测之提取车道线)
python·opencv·计算机视觉
Spcarrydoinb11 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉
I'mFAN14 小时前
QT_xcb 问题
人工智能·python·opencv·计算机视觉
晨航15 小时前
AI Agent拐点已至,2B+2C星辰大海——行业深度报告
人工智能·ai·aigc
zy_destiny15 小时前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪