117篇 | 3D Gaussian Splatting论文

本论文集划分为4个部分:综述&基础(14篇)、NeRF在AIGC(54篇)、NeRF在SLAM(自动驾驶)(25篇)、NeRF之场景建模(25篇)

https://t.zsxq.com/3ATyEhttps://t.zsxq.com/3ATyE

3D Gaussian Splatting(3DGS)是一种用于实时辐射场渲染的光栅化技术,它通过对3D高斯分布的描述,实现了实时渲染从小图像样本中学习到的逼真场景。该技术的核心是光栅化,即将3D高斯分布以像素的形式展现在2D平面上。以下是关于3DGS的详细介绍:

3D GS的实现原理分为以下几个步骤:

  1. 运动结构恢复(SfM):通过一组图像估计点云,这是从2D图像估计3D点云的一种方法,可以通过COLMAP库实现。

  2. 转换为高斯分布:将每个点转换为高斯分布,这对于光栅化已经足够。然而,仅从SfM数据中只能推断出位置和颜色,为了学习产生高质量结果的表示,需要对其进行训练。

  3. 模型训练:训练过程使用随机梯度下降,类似于神经网络,但没有层。训练步骤包括:根据光栅化图像和地面真实图像之间的差异计算损失。

  4. 可微分高斯光栅化:光栅化器是可微分的,因此可以用随机梯度下降进行训练。然而,这仅与训练相关 - 训练有素的高斯也可以用不可微的方法呈现。

3DGS受到广泛关注的原因主要有以下几点:

  1. 高质量的实时场景渲染:通过3DGS技术,可以实现实时渲染从小图像样本中学习到的逼真场景。

  2. 技术未知领域的探索:关于Gaussian Splatting还能做什么还有很多未知数,例如是否可以模拟反射等。

  3. 对嵌入式人工智能研究的兴趣:人们越来越关注如何将人工智能技术应用于3D空间表示等领域。

相关推荐
阿坡RPA7 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
几米哥10 小时前
从思考到行动:AutoGLM沉思如何让AI真正"动"起来
llm·aigc·chatglm (智谱)
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
头顶秃成一缕光13 小时前
若依——基于AI+若依框架的实战项目(实战篇(下))
java·前端·vue.js·elementui·aigc
AndrewHZ13 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
weixin_4352081614 小时前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
你觉得20514 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
jndingxin15 小时前
OpenCV 图形API(11)对图像进行掩码操作的函数mask()
人工智能·opencv·计算机视觉
360安全应急响应中心15 小时前
基于 RAG 提升大模型安全运营效率
安全·aigc