SparkSQL与Hive整合 、SparkSQL函数操作

SparkSQL与Hive整合

SparkSQL和Hive的整合,是一种比较常见的关联处理方式,SparkSQL加载Hive中的数据进行业务处理,同时将计算结果落地回Hive中。

整合需要注意的地方

1)需要引入hive的hive-site.xml,添加classpath目录下面即可,或者放到$SPARK_HOME/conf。

2)为了能够正常解析hive-site.xml中hdfs路径,需要将hdfs-site.xml和core-site.xml到classpath下面。整合编码如下:

object Hive_Support {
  def main(args: Array[String]): Unit = {
    //创建sparkSql程序入口
    val spark: SparkSession = SparkSession.builder()
      .appName("demo")
      .master("local[*]")
      .enableHiveSupport()
      .getOrCreate()
    //调用sparkContext
    val sc: SparkContext = spark.sparkContext
    //设置日志级别
    sc.setLogLevel("WARN")
    //导包
    import spark.implicits._
    //查询hive当中的表
    spark.sql("show tables").show()
    //创建表
    spark.sql("CREATE TABLE person (id int, name string, age int) row format delimited fields terminated by ' '")
    //导入数据
    spark.sql("load data local inpath'./person.txt' into table person")
    //查询表当中数据
    spark.sql("select * from person").show()
  }
}

SparkSQL函数操作

函数的定义

SQL中函数,其实说白了就是各大编程语言中的函数,或者方法,就是对某一特定功能的封装,通过它可以完成较为复杂的统计。这里的函数的学习,就基于Hive中的函数来学习。

函数的分类

函数的分类方式非常多,主要从功能和实现方式上进行区分。

实现方式上分类

1)UDF(User Defined function)用户自定义函数:一路输入,一路输出,比如year,date_add, instr。

2)UDAF(User Defined aggregation function)用户自定义聚合函数:多路输入,一路输出,常见的聚合函数:count、sum、collect_list。

3)UDTF(User Defined table function)用户自定义表函数:一路输入,多路输出,explode。

4)开窗函数:row_number(),sum/max/min over。

用户自定义函数

当系统提供的这些函数,满足不了我们的需要的话,就只能进行自定义相关的函数,一般自定义的函数两种,UDF和UDAF。

1)UDF:一路输入,一路输出,完成就是基于scala函数。

通过模拟获取字符串长度的udf来学习自定义udf操作。

object UDF_Demo {
  def main(args: Array[String]): Unit = {
    //创建sparkSql程序入口
    val spark: SparkSession = SparkSession.builder().appName("demo").master("local[*]").getOrCreate()
    //调用sparkContext
    val sc: SparkContext = spark.sparkContext
    //设置日志级别
    sc.setLogLevel("WARN")
    //导包
    import spark.implicits._
    //加载文件
    val personDF: DataFrame = spark.read.json("E:\\data\\people.json")
    //展示数据
    //personDF.show()
    //注册成为一张表
    personDF.createOrReplaceTempView("t_person")
    //赋予什么功能
    val fun = (x:String)=>{
      "Name:"+x
    }
    //没有addName这个函数,就注册它
    spark.udf.register("addName",fun)
    //查询
    spark.sql("select name,addName(name) from t_person").show()

//释放资源

spark.stop()

  }}

2)开窗函数:over()开窗函数是按照某个字段分组,然后查询出另一字段的前几个的值,相当于分组取topN。

row_number() over (partitin by XXX order by XXX)

rank() 跳跃排序,有两个第二名是,后边跟着的是第四名

dense_rank() 连续排序,有两个第二名是,后边跟着的是第三名

row_number() 连续排序,两个值相同排序也是不同

在使用聚合函数后,会将多行变成一行,而over()开窗函数其实就是给每个分组的数据,按照其排序的顺序,打上一个分组内的行号,直接将所有列信息显示出来。在使用聚合函数后,如果要显示其它的列必须将列加入到group by中,而使用开窗函数后,可以不使用group by。

代码如下:

case class StudentScore(name:String,clazz:Int,score:Int)
object SparkSqlOverDemo {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("sparksqlover")
    val sc = new SparkContext(conf)
    val spark = SparkSession.builder().config(conf).getOrCreate()
    val arr01 = Array(("a",1,88),
      ("b",1,78),
      ("c",1,95),
      ("d",2,74),
      ("e",2,92),
      ("f",3,99),
      ("g",3,99),
      ("h",3,45),
      ("i",3,53),
      ("j",3,78))

    import spark.implicits._
    val scoreRDD = sc.makeRDD(arr01).map(x=>StudentScore(x._1,x._2,x._3)).toDS
    scoreRDD.createOrReplaceTempView("t_score")
    //查询t_score表数据
    spark.sql("select * from t_score").show()
    //使用开窗函数查找topN,rank() 跳跃排序,有两个第二名是,后边跟着的是第四名
    spark.sql("select name,clazz,score, rank() over( partition by clazz order by score desc ) rownum from t_score ").show()
    //讲使用开窗函数后的查询结果作为一张临时表,这个临时表有每个班的成绩排名,再取前三名
    spark.sql("select * from (select name,clazz,score, rank() over( partition by clazz order by score desc ) rownum from t_score) t1 where rownum <=3 ").show()
  }
}
相关推荐
Data跳动4 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc1115 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq6 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq6 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈6 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
Java程序之猿6 小时前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰7 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
小白学大数据7 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
15年网络推广青哥7 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
节点。csn8 小时前
Hadoop yarn安装
大数据·hadoop·分布式