分布式与一致性协议之一致哈希算法(三)

一致哈希算法

如何使用一致哈希算法实现哈希寻址

我们一起来看一个例子,对于1000万个key的3节点KV存储,如果我们使用一致哈希算法增加1个节点,即3节点集群变为4节点集群,则只需要迁移24.3%的数据,如代码所示

go 复制代码
package main

import (
"flag"
"fmt"
"log"
"stathat.com/c/consistent"
"strconv"
)

var keysPtr = flag.Int("keys", 10000, "key number")
var nodesPtr = flag.Int("nodes", 3, "node number of old cluster")
var newNodesPtr = flag.Int("new-nodes", 4, "node number of new cluster")

func hash(key int, nodes int) int {
return key % nodes
}

func main() {

flag.Parse()
var keys = *keysPtr
var nodes = *nodesPtr
var newNodes = *newNodesPtr

c := consistent.New()
for i := 0; i < nodes; i++ {
c.Add(strconv.Itoa(i))
}

newC := consistent.New()
for i := 0; i < newNodes; i++ {
newC.Add(strconv.Itoa(i))
}

migrate := 0
for i := 0; i < keys; i++ {
server, err := c.Get(strconv.Itoa(i))
if err != nil {
log.Fatal(err)
}

newServer, err := newC.Get(strconv.Itoa(i))
if err != nil {
log.Fatal(err)
}

if server != newServer {
migrate++
}
}

migrateRatio := float64(migrate) / float64(keys)
fmt.Printf("%f%%\n", migrateRatio*100)
}
c 复制代码
go run ./consistent-hash.go -keys 10000000 -nodes 3 -new-nodes 4
24.301550%

你看,使用了一致哈希算法后,我们需要迁移的数据量仅为使用哈希算法时的三分之一,是不是大大提升了效率呢?

总的来说,使用一致哈希算法在扩容或缩容时,都只需要重定位环空间中的一小部分数据。也就是说,一致哈希算法具有较好的容错性和可扩展性。需要注意的是,在哈希寻址中常出现这样的问题:客户端访问请求集群在少数的节点上,导致有些机器高负载,有些机器低负载的情况。那么有什么办法能让数据访问分布得比较均匀呢?答案就是虚拟节点。

在一致哈希算法中,如果节点太少,则很容易因为节点分布不均匀造成数据访问的冷热不均,也就是说,大多数访问请求都会集中少量几个节点上,如图所示。从图中可以看到,虽然集群有3个节点,但访问请求主要集中在节点A上。那么如何通过虚拟节点解决冷热不均的问题呢?

其实,可以对每一个服务器节点计算多个哈希值,在每个计算结果位置上都放置一个虚拟节点,并将虚拟节点映射到实际节点。比如,在主机名的后面增加比那好,分别计算Node-A-01、Node-A-02、Node-B-01、Node-B-02、Node-C-01、Node-C-02的哈希值,形成6个虚拟节点,如图所示,可以从图中看到,增加了节点后,节点在哈希环上的分布就相对均匀了,这时,如果有访问请求寻址到Node-A-01这个虚拟节点,将被重定位到节点A。你看这样我们就解决了冷热不均匀的问题。可能有人已经发现了,节点数越多,使用哈希算法时需要迁移的数据就越多,而使用一致哈希算法时需要迁移的数据就越少,如代码清单所示

c 复制代码
go run ./hash.go -keys 10000000 -nodes 3 -new-nodes 4
74.999980%
go run ./hash.go -keys 10000000 -nodes 10 -new-nodes 11
90.909000%

go run ./consistent-hashgo.go -keys 10000000 -nodes 3 -new-nodes 4
24.301550%
go run ./consistent-hashgo.go -keys 10000000 -nodes 10 -new-nodes 11
6.479330%

从示例代码的输出中可以看到,当我们向10节点集群中增加节点时,如果使用哈希算法,则需要迁移高达90.91%的数据,如果使用一致哈希算法,则需要迁移6.48%的数据。

需要注意的是,使用一致哈希算法实现哈希寻址时,可以通过增加节点数来降低节点宕机对整个集群的影响,以及故障恢复时需要迁移的数据量。后续在需要时,你也可以通过增加节点数来提升系统的容灾能力和故障恢复效率。

思考

Raft集群具有容错能力,能容忍少数的节点故障,那么在多个Raft集群组成的KV系统中,如何设计一致哈希算法,以实现当某个集群的领导者节点出现故障并选举出新的领导者后,整个系统还能稳定运行呢?

在多个Raft集群组成的KV系统中,设计一致哈希算法以实现领导者节点故障后系统的稳定运行,需要确保在领导者节点变更时,数据的一致性和服务的连续性。以下是一些建议的步骤和考虑因素:

  • 1.虚拟节点和环形哈希空间:
    一致哈希算法通过引入虚拟节点和环形哈希空间,实现了节点动态扩缩容时数据迁移的最小化。在Raft集群组成的KV系统中,每个Raft集群可以视为一个物理节点,并在其上创建多个虚拟节点。虚拟节点能够平滑地将数据分布到多个物理节点上,减少单个物理节点故障对系统的影响。
  • 2.领导者故障检测与恢复:
    当某个Raft集群的领导者节点出现故障时,该集群内部会通过Raft的领导者选举机制选举出新的领导者。KV系统需要监控Raft集群的状态,并在检测到领导者节点故障时,更新其内部的一致哈希映射,确保新的领导者节点能够接管服务。
  • 3.数据同步与一致性:
    在领导者节点故障期间,可能会有一些数据尚未同步到新的领导者节点。因此,在选举出新的领导者后,需要确保数据的同步和一致性。
    这可以通过Raft的日志复制机制来实现。新的领导者节点可以从其他跟随者节点那里拉取缺失的日志条目,并应用到状态机中以更新系统状态。
  • 4.路由与负载均衡:
    一致哈希算法通过计算键的哈希值,并将其映射到环形哈希空间上的某个虚拟节点,从而确定数据的存储位置。在多个Raft集群组成的KV系统中,需要设计一种路由机制,使得客户端能够根据键的哈希值将数据路由到正确的Raft集群和虚拟节点上。同时,还需要考虑负载均衡的问题,确保各个Raft集群之间的负载相对均衡。
  • 5.故障恢复与容错性:
    在设计系统时,需要考虑各种可能的故障场景,并制定相应的故障恢复策略。
    例如,当某个Raft集群完全故障时,系统需要能够自动将其从一致哈希映射中移除,并将该集群上的数据迁移到其他健康的集群上。
    此外,还需要考虑如何在不影响系统稳定性的前提下,对系统进行扩容和缩容。
    6.测试与验证:
    在实际部署之前,需要对系统进行充分的测试和验证,以确保其能够在各种故障场景下稳定运行。
    这包括单元测试、集成测试、压力测试等不同类型的测试。
    综上所述,设计一致哈希算法以实现多个Raft集群组成的KV系统的稳定运行,需要综合考虑虚拟节点、领导者故障检测与恢复、数据同步与一致性、路由与负载均衡、故障恢复与容错性以及测试与验证等多个方面。

重点总结

  • 1.一致哈希算法是一种特殊的哈希算法,该算法可以使节点增减变化时只影响到部分数据的路由寻址,也就是说我们只要迁移部分数据,就能实现集群的稳定了。
  • 2.当节点数较少时,可能会出现节点在哈希环上分布不均匀的情况,即每个节点实际在环上占据的区间大小不一,最终导致业务对节点的访问冷热不均,而这个问题可以通过引入更多的虚拟节点来解决。
  • 3.一致哈希算法本质上是一种路由寻址算法,适合简单的路由寻址场景,比如,在KV存储系统内部,它的特点是简单,不需要维护路由信息

有人可能会有这样的疑问:关于Raft算法的原理以及一致哈希算法如何突破集群"领导者"的限制,但是有的公司的配置中心、名字路由等使用的是ZooKeeper,那么ZAB协议是如何实现一致性的呢?ZAB协议和Raft算法又有什么不一样呢?

相关推荐
weixin_5375904519 分钟前
《Java编程入门官方教程》第八章练习答案
java·开发语言·servlet
技术路上的苦行僧30 分钟前
分布式专题(8)之MongoDB存储原理&多文档事务详解
数据库·分布式·mongodb
龙哥·三年风水38 分钟前
workman服务端开发模式-应用开发-后端api推送修改二
分布式·gateway·php
CodeClimb1 小时前
【华为OD-E卷-最左侧冗余覆盖子串 100分(python、java、c++、js、c)】
java·python·华为od
Q_19284999061 小时前
基于Spring Boot的大学就业信息管理系统
java·spring boot·后端
小小工匠1 小时前
分布式协同 - 分布式事务_2PC & 3PC解决方案
分布式·分布式事务·2pc·3pc
xmh-sxh-13141 小时前
常用数据库类型介绍
java
single5941 小时前
【c++笔试强训】(第四十一篇)
java·c++·算法·深度优先·图论·牛客
1 9 J1 小时前
Java 上机实践11(组件及事件处理)
java·开发语言·学习·算法