「网络流 24 题」最小路径覆盖 【最小路径覆盖】

「网络流 24 题」最小路径覆盖

思路

具体可以看 这篇博客

对于有向无环图 ,我们只需要将假装 将点裂成左点和右点(实际没有裂开),然后连边;

在上面跑二分图最大匹配 后,剩下没有匹配的左点就是终点 (因为它没有匹配,没有出边了),没有匹配的右点就是起点(因为没有点能够到达它)

那么最小路径覆盖数就是: 点数 − 最大匹配数 点数 - 最大匹配数 点数−最大匹配数

对于输出路径划分方案,我们可以利用 m a t c h match match 数组,因为 u = m a t c h [ v ] u = match[v] u=match[v] 记录的就是 u → v u \rarr v u→v 这条边,并且是最小路径覆盖,那么 v v v 的唯一入度就是 u u u,所以我们可以线性处理

最终从每条路径的起点搜索输出即可

时间复杂度: O ( n m ) O(nm) O(nm)

cpp 复制代码
// Problem: #6002. 「网络流 24 题」最小路径覆盖
// Contest: LibreOJ
// URL: https://loj.ac/p/6002
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n' 
#define ull unsigned long long

const int INF=0x3f3f3f3f;
const long long INFLL=0x3f3f3f3f3f3f3f3fLL;

typedef long long ll;

const int N = 250;

std::vector<int> match; //match[i]表示每个右点i当前匹配的左点
std::vector<bool> used; //当前轮 右点 i 是否被预定
std::vector<int> g[N];

bool dfs(int l){ //为当前左点 l 寻找匹配
    for(auto r : g[l])
        if(!used[r]){ //如果当前轮右点r还没有被预订
            used[r] = true; //预定
            if(!match[r] || dfs(match[r])){
                match[r] = l;
                return true;
//(1)如果右点 r 还没有配对
//(2)右点 r 已经配对,尝试更换其原配左点
            }
        }
    return false;
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int n, m;
    std::cin >> n >> m;
    match.assign(n + 1, 0);
    while(m--){
    	int u, v;
    	std::cin >> u >> v;
    	g[u].push_back(v);
    }
    
    std::vector<int> nxt(n + 1, 0);
    
    int cnt = 0;
    fore(i, 1, n + 1){
    	used.assign(n + 1, false);
    	cnt += dfs(i);
    }
    
    std::vector<bool> head(n + 1, true); //是否为起点
    fore(v, 1, n + 1){
    	int u = match[v];
    	if(!u)	continue;
    	nxt[u] = v;
    	head[v] = false;
    }
    
    fore(i, 1, n + 1){
    	if(!head[i])	continue;
    	int u = i; //从起点开始搜,路径唯一
    	while(nxt[u]){
    		std::cout << u << ' ';
    		u = nxt[u];
    	}
    	std::cout << u << endl;
    }
    
    std::cout << n - cnt; //最小路径覆盖数量
    
	return 0; 
}
相关推荐
AndrewHZ10 分钟前
【Python生活】如何构建一个跌倒检测的算法?
python·算法·生活·可视化分析·陀螺仪·加速度计·跌倒检测
写个博客1 小时前
代码随想录算法训练营第三十九天
算法
源码方舟2 小时前
【基于ALS模型的教育视频推荐系统(Java实现)】
java·python·算法·音视频
fancy1661662 小时前
力扣top100 矩阵置零
人工智能·算法·矩阵
元亓亓亓3 小时前
LeetCode热题100--240.搜索二维矩阵--中等
算法·leetcode·矩阵
明月看潮生4 小时前
青少年编程与数学 02-019 Rust 编程基础 09课题、流程控制
开发语言·算法·青少年编程·rust·编程与数学
oioihoii4 小时前
C++23 views::slide (P2442R1) 深入解析
linux·算法·c++23
yuhao__z4 小时前
代码随想录算法训练营第六十三天| 图论9—卡码网47. 参加科学大会,94. 城市间货物运输 I
算法·图论
June`5 小时前
专题三:穷举vs暴搜vs深搜vs回溯vs剪枝(全排列)决策树与递归实现详解
c++·算法·深度优先·剪枝
vlln5 小时前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习