「网络流 24 题」最小路径覆盖 【最小路径覆盖】

「网络流 24 题」最小路径覆盖

思路

具体可以看 这篇博客

对于有向无环图 ,我们只需要将假装 将点裂成左点和右点(实际没有裂开),然后连边;

在上面跑二分图最大匹配 后,剩下没有匹配的左点就是终点 (因为它没有匹配,没有出边了),没有匹配的右点就是起点(因为没有点能够到达它)

那么最小路径覆盖数就是: 点数 − 最大匹配数 点数 - 最大匹配数 点数−最大匹配数

对于输出路径划分方案,我们可以利用 m a t c h match match 数组,因为 u = m a t c h [ v ] u = match[v] u=match[v] 记录的就是 u → v u \rarr v u→v 这条边,并且是最小路径覆盖,那么 v v v 的唯一入度就是 u u u,所以我们可以线性处理

最终从每条路径的起点搜索输出即可

时间复杂度: O ( n m ) O(nm) O(nm)

cpp 复制代码
// Problem: #6002. 「网络流 24 题」最小路径覆盖
// Contest: LibreOJ
// URL: https://loj.ac/p/6002
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n' 
#define ull unsigned long long

const int INF=0x3f3f3f3f;
const long long INFLL=0x3f3f3f3f3f3f3f3fLL;

typedef long long ll;

const int N = 250;

std::vector<int> match; //match[i]表示每个右点i当前匹配的左点
std::vector<bool> used; //当前轮 右点 i 是否被预定
std::vector<int> g[N];

bool dfs(int l){ //为当前左点 l 寻找匹配
    for(auto r : g[l])
        if(!used[r]){ //如果当前轮右点r还没有被预订
            used[r] = true; //预定
            if(!match[r] || dfs(match[r])){
                match[r] = l;
                return true;
//(1)如果右点 r 还没有配对
//(2)右点 r 已经配对,尝试更换其原配左点
            }
        }
    return false;
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int n, m;
    std::cin >> n >> m;
    match.assign(n + 1, 0);
    while(m--){
    	int u, v;
    	std::cin >> u >> v;
    	g[u].push_back(v);
    }
    
    std::vector<int> nxt(n + 1, 0);
    
    int cnt = 0;
    fore(i, 1, n + 1){
    	used.assign(n + 1, false);
    	cnt += dfs(i);
    }
    
    std::vector<bool> head(n + 1, true); //是否为起点
    fore(v, 1, n + 1){
    	int u = match[v];
    	if(!u)	continue;
    	nxt[u] = v;
    	head[v] = false;
    }
    
    fore(i, 1, n + 1){
    	if(!head[i])	continue;
    	int u = i; //从起点开始搜,路径唯一
    	while(nxt[u]){
    		std::cout << u << ' ';
    		u = nxt[u];
    	}
    	std::cout << u << endl;
    }
    
    std::cout << n - cnt; //最小路径覆盖数量
    
	return 0; 
}
相关推荐
XFF不秃头30 分钟前
力扣刷题笔记-旋转图像
c++·笔记·算法·leetcode
王老师青少年编程44 分钟前
csp信奥赛C++标准模板库STL案例应用3
c++·算法·stl·csp·信奥赛·lower_bound·标准模版库
有为少年2 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
Ven%2 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
山楂树の2 小时前
爬楼梯(动态规划)
算法·动态规划
谈笑也风生2 小时前
经典算法题型之复数乘法(二)
开发语言·python·算法
智算菩萨2 小时前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
lhn2 小时前
大模型强化学习总结
算法
Gigavision2 小时前
MMPD数据集 最新Mamba算法 源码+数据集 下载方式
算法
Xの哲學2 小时前
Linux UPnP技术深度解析: 从设计哲学到实现细节
linux·服务器·网络·算法·边缘计算