【LLama】Llama3 的本地部署与lora微调(基于xturn)

系列课程代码+文档(前2节课可跳过)https://github.com/SmartFlowAI/Llama3-Tutorial

课程视频https://space.bilibili.com/3546636263360696/channel/series
XTunerhttps://github.com/InternLM/xtuner/blob/main/README_zh-CN.md

一、Llama 3 本地部署(Nidia3090显卡)

教程所提供的在线显卡只有8G, 微调和推理时一般是16-20G,所以本地部署。

下载llama3模型

bash 复制代码
# 如果下面命令报错则使用 apt install git git-lfs -y
conda install git-lfs
git-lfs install
git clone https://code.openxlab.org.cn/MrCat/Llama-3-8B-Instruct.git Meta-Llama-3-8B-Instruct

下载在本地后的内容

本地环境

bash 复制代码
conda create -n llama3-xtuner python=3.10 -y
conda activate llama3-xtuner
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia

其他依赖

bash 复制代码
git clone https://github.com/InternLM/xtuner.git
cd xtuner
conda activate llama3-xtuner
pip install -e .

运行llama3-instruct

Llama3-Tutorial-main

bash 复制代码
streamlit run ~/code/Llama3-Tutorial-main/tools/internstudio_web_demo.py \
  ~/code/Meta-Llama-3-8B-Instruct

二、 使用Xturn微调llama3 (1条数据)

主要参考:https://github.com/SmartFlowAI/Llama3-Tutorial/blob/main/docs/assistant.md

2.1 生成训练数据

重复次数 n = 2按需要修改,跑流程时可以很小,原始设置是2000

改为自己的名字:

name = '曾小蛙'

author="星艺AI"

python 复制代码
import json

# 输入你的名字
name = '曾小蛙'
author="星艺AI"
# 重复次数
n = 2

data = [
    {
        "conversation": [
            {
                "system":"你是一个懂中文的小助手",
                "input": "你是(请用中文回答)",
                "output": "您好,我是{},一个由 {} 打造的人工智能助手,请问有什么可以帮助您的吗?".format(name, author)

               
            }
        ]
    }
]

for i in range(n):
    data.append(data[0])

with open('data/personal_assistant.json', 'w', encoding='utf-8') as f:
    json.dump(data, f, ensure_ascii=False, indent=4)

生成的训练用的json

2.2 修改训练脚本

Llama3-Tutorial/configs/assistant/llama3_8b_instruct_qlora_assistant.py

2.3 开始训练

bash 复制代码
xtuner train configs/assistant/llama3_8b_instruct_qlora_assistant.py

保存的结果

2.4 Adapter PTH 转 HF 格式

bash 复制代码
xtuner convert pth_to_hf ~/code/Llama3-Tutorial-main/work_dirs/llama3_8b_instruct_qlora_assistant/llama3_8b_instruct_qlora_assistant.py \
  ~/code/Llama3-Tutorial-main/work_dirs/llama3_8b_instruct_qlora_assistant/iter_20.pth \
  ~/code/Llama3-Tutorial-main/work_dirs/llama3_hf_adapter

2.5 合并lora到llama3中

记得将模型换为自己的路径·

本文使用相对路径,llama3的模型与教程代码在

bash 复制代码
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert merge ./Meta-Llama-3-8B-Instruct \
  ./Llama3-Tutorial-main/work_dirs/llama3_hf_adapter\
  ./Llama3-Tutorial-main/work_dirs/llama3_hf_merged

2.6 推理微调后的模型 (过拟合,还需要重新调参数)

Llama3-Tutorial-main是手动下载的

bash 复制代码
streamlit run ./Llama3-Tutorial-main/tools/internstudio_web_demo.py \
  ./Llama3-Tutorial-main/work_dirs//llama3_hf_merged
相关推荐
白熊1881 小时前
【大模型LLM】梯度累积(Gradient Accumulation)原理详解
人工智能·大模型·llm
愚戏师1 小时前
机器学习(重学版)基础篇(算法与模型一)
人工智能·算法·机器学习
F_D_Z2 小时前
【PyTorch】图像多分类项目部署
人工智能·pytorch·python·深度学习·分类
音视频牛哥4 小时前
打通视频到AI的第一公里:轻量RTSP服务如何重塑边缘感知入口?
人工智能·计算机视觉·音视频·大牛直播sdk·机器视觉·轻量级rtsp服务·ai人工智能
Wendy14415 小时前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰5 小时前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索5 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传
zzywxc7876 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny6 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子7 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理