【LLama】Llama3 的本地部署与lora微调(基于xturn)

系列课程代码+文档(前2节课可跳过)https://github.com/SmartFlowAI/Llama3-Tutorial

课程视频https://space.bilibili.com/3546636263360696/channel/series
XTunerhttps://github.com/InternLM/xtuner/blob/main/README_zh-CN.md

一、Llama 3 本地部署(Nidia3090显卡)

教程所提供的在线显卡只有8G, 微调和推理时一般是16-20G,所以本地部署。

下载llama3模型

bash 复制代码
# 如果下面命令报错则使用 apt install git git-lfs -y
conda install git-lfs
git-lfs install
git clone https://code.openxlab.org.cn/MrCat/Llama-3-8B-Instruct.git Meta-Llama-3-8B-Instruct

下载在本地后的内容

本地环境

bash 复制代码
conda create -n llama3-xtuner python=3.10 -y
conda activate llama3-xtuner
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia

其他依赖

bash 复制代码
git clone https://github.com/InternLM/xtuner.git
cd xtuner
conda activate llama3-xtuner
pip install -e .

运行llama3-instruct

Llama3-Tutorial-main

bash 复制代码
streamlit run ~/code/Llama3-Tutorial-main/tools/internstudio_web_demo.py \
  ~/code/Meta-Llama-3-8B-Instruct

二、 使用Xturn微调llama3 (1条数据)

主要参考:https://github.com/SmartFlowAI/Llama3-Tutorial/blob/main/docs/assistant.md

2.1 生成训练数据

重复次数 n = 2按需要修改,跑流程时可以很小,原始设置是2000

改为自己的名字:

name = '曾小蛙'

author="星艺AI"

python 复制代码
import json

# 输入你的名字
name = '曾小蛙'
author="星艺AI"
# 重复次数
n = 2

data = [
    {
        "conversation": [
            {
                "system":"你是一个懂中文的小助手",
                "input": "你是(请用中文回答)",
                "output": "您好,我是{},一个由 {} 打造的人工智能助手,请问有什么可以帮助您的吗?".format(name, author)

               
            }
        ]
    }
]

for i in range(n):
    data.append(data[0])

with open('data/personal_assistant.json', 'w', encoding='utf-8') as f:
    json.dump(data, f, ensure_ascii=False, indent=4)

生成的训练用的json

2.2 修改训练脚本

Llama3-Tutorial/configs/assistant/llama3_8b_instruct_qlora_assistant.py

2.3 开始训练

bash 复制代码
xtuner train configs/assistant/llama3_8b_instruct_qlora_assistant.py

保存的结果

2.4 Adapter PTH 转 HF 格式

bash 复制代码
xtuner convert pth_to_hf ~/code/Llama3-Tutorial-main/work_dirs/llama3_8b_instruct_qlora_assistant/llama3_8b_instruct_qlora_assistant.py \
  ~/code/Llama3-Tutorial-main/work_dirs/llama3_8b_instruct_qlora_assistant/iter_20.pth \
  ~/code/Llama3-Tutorial-main/work_dirs/llama3_hf_adapter

2.5 合并lora到llama3中

记得将模型换为自己的路径·

本文使用相对路径,llama3的模型与教程代码在

bash 复制代码
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert merge ./Meta-Llama-3-8B-Instruct \
  ./Llama3-Tutorial-main/work_dirs/llama3_hf_adapter\
  ./Llama3-Tutorial-main/work_dirs/llama3_hf_merged

2.6 推理微调后的模型 (过拟合,还需要重新调参数)

Llama3-Tutorial-main是手动下载的

bash 复制代码
streamlit run ./Llama3-Tutorial-main/tools/internstudio_web_demo.py \
  ./Llama3-Tutorial-main/work_dirs//llama3_hf_merged
相关推荐
tangdou3690986551 分钟前
AI真好玩系列-WebGL爱心粒子手势互动教程 | Interactive Heart Particles with Hand Gestures
前端·人工智能·webgl
谷粒.2 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR7 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信8 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20098 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟8 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播9 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训9 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹9 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys551810 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化